메뉴 건너뛰기




Volumn 61, Issue 5, 2005, Pages 781-821

Convergence and approximation of semigroups of Lipschitz operators

Author keywords

Chernoff's formula; Dissipative condition; Infinitesimal generator; Semigroup of Lipschitz operators; Subtangential condition

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; CONVERGENCE OF NUMERICAL METHODS; FINITE DIFFERENCE METHOD; LINEAR EQUATIONS; PROBLEM SOLVING; THEOREM PROVING;

EID: 14944341209     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2005.01.040     Document Type: Article
Times cited : (6)

References (18)
  • 2
    • 0011655918 scopus 로고
    • Convergence and approximation of semigroups of nonlinear operators in Banach spaces
    • H. Brezis, and A. Pazy Convergence and approximation of semigroups of nonlinear operators in Banach spaces J. Funct. Anal. 9 1972 63 74
    • (1972) J. Funct. Anal. , vol.9 , pp. 63-74
    • Brezis, H.1    Pazy, A.2
  • 3
    • 0001167096 scopus 로고
    • Note on product formulas for operator semigroups
    • P.R. Chernoff Note on product formulas for operator semigroups J. Funct. Anal. 2 1968 238 242
    • (1968) J. Funct. Anal. , vol.2 , pp. 238-242
    • Chernoff, P.R.1
  • 6
    • 14944338867 scopus 로고
    • A remark on convergence of nonlinear semigroups
    • Y. Kobayashi A remark on convergence of nonlinear semigroups Proc. Japan Acad. 55 1979 45 48
    • (1979) Proc. Japan Acad. , vol.55 , pp. 45-48
    • Kobayashi, Y.1
  • 8
    • 0040354346 scopus 로고
    • Extension of Trotter's operator semigroup approximation theorems
    • T.G. Kurtz Extension of Trotter's operator semigroup approximation theorems J. Funct. Anal. 3 1969 354 375
    • (1969) J. Funct. Anal. , vol.3 , pp. 354-375
    • Kurtz, T.G.1
  • 9
    • 77950989737 scopus 로고
    • Convergence of sequences of semigroups of nonlinear operators with an application to Gas kinetics
    • T.G. Kurtz Convergence of sequences of semigroups of nonlinear operators with an application to Gas kinetics Trans. Amer. Math. Soc. 186 1973 259 272
    • (1973) Trans. Amer. Math. Soc. , vol.186 , pp. 259-272
    • Kurtz, T.G.1
  • 10
    • 14944368808 scopus 로고
    • Convergence of accretive operators and nonlinear semigroups
    • Y.S. Lee, and S. Reich Convergence of accretive operators and nonlinear semigroups Comm. Appl. Nonlinear Anal. 2 1995 11 46
    • (1995) Comm. Appl. Nonlinear Anal. , vol.2 , pp. 11-46
    • Lee, Y.S.1    Reich, S.2
  • 11
    • 14944379733 scopus 로고
    • Convergence of nonlinear algorithms
    • Y.S. Lee, and S. Reich Convergence of nonlinear algorithms J. Korean Math. Soc. 32 1995 115 139
    • (1995) J. Korean Math. Soc. , vol.32 , pp. 115-139
    • Lee, Y.S.1    Reich, S.2
  • 12
    • 0040395867 scopus 로고
    • On product formulas for nonlinear semigroups
    • J.E. Marsden On product formulas for nonlinear semigroups J. Funct. Anal. 13 1973 51 72
    • (1973) J. Funct. Anal. , vol.13 , pp. 51-72
    • Marsden, J.E.1
  • 15
    • 84972566036 scopus 로고
    • Approximation of semi-groups of nonlinear operators
    • I. Miyadera, and S. Oharu Approximation of semi-groups of nonlinear operators Tôhoku Math. J. 22 1970 24 47
    • (1970) Tôhoku Math. J. , vol.22 , pp. 24-47
    • Miyadera, I.1    Oharu, S.2
  • 16
    • 14944374863 scopus 로고
    • Convergence and approximation of nonlinear semigroups
    • S. Reich Convergence and approximation of nonlinear semigroups J. Math. Anal. Appl. 76 1980 77 83
    • (1980) J. Math. Anal. Appl. , vol.76 , pp. 77-83
    • Reich, S.1
  • 17
    • 0002079211 scopus 로고
    • A nonlinear Hille-Yosida theorem in Banach spaces
    • S. Reich A nonlinear Hille-Yosida theorem in Banach spaces J. Math. Anal. Appl. 84 1981 1 5
    • (1981) J. Math. Anal. Appl. , vol.84 , pp. 1-5
    • Reich, S.1
  • 18
    • 84972529309 scopus 로고
    • Approximation of semi-groups of operators
    • H.F. Trotter Approximation of semi-groups of operators Pacific J. Math. 8 1958 887 919
    • (1958) Pacific J. Math. , vol.8 , pp. 887-919
    • Trotter, H.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.