메뉴 건너뛰기




Volumn 9, Issue 1, 2005, Pages 31-43

Handling continuous attributes in an evolutionary inductive learner

Author keywords

Discretization; Evolutionary computation; Inductive concept learning (ICL)

Indexed keywords

EVOLUTIONARY ALGORITHMS; LEARNING ALGORITHMS; LOGIC PROGRAMMING; MATHEMATICAL OPERATORS; OPTIMIZATION;

EID: 14844362968     PISSN: 1089778X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TEVC.2004.837752     Document Type: Article
Times cited : (11)

References (54)
  • 1
    • 0004255908 scopus 로고    scopus 로고
    • ser. Computer Science. New York:
    • T. Mitchell, Machine Learning, ser. Computer Science. New York: McGraw-Hill, 1997. McGraw-Hill
    • (1997) Machine Learning
    • Mitchell, T.1
  • 2
    • 0028429573 scopus 로고
    • "Inductive logic programming: Theory and methods"
    • S. Muggleton and L. D. Raedt, "Inductive logic programming: Theory and methods," J. Logic Prog., vol. 19-20, pp. 669-679, 1994.
    • (1994) J. Logic Prog. , vol.19-20 , pp. 669-679
    • Muggleton, S.1    Raedt, L.D.2
  • 3
    • 85139983802 scopus 로고
    • "Supervised and unsupervised discretization of continuous features"
    • J. Dougherty, R. Kohavi, and M. Sahami, "Supervised and unsupervised discretization of continuous features," in Proc. In. Conf Mach. Learn., 1995, pp. 194-202.
    • (1995) Proc. In. Conf Mach. Learn. , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 8
    • 0002593344 scopus 로고
    • "Multi-interval discretization of continues attributes as preprocessing for classification learning"
    • San Mateo, CA
    • U. Fayyad and K. Irani, "Multi-interval discretization of continues attributes as preprocessing for classification learning," in Proc. 13th Int. Joint Conf Artif. Intell.. San Mateo, CA, 1993, pp. 1022-1027.
    • (1993) Proc. 13th Int. Joint Conf Artif. Intell. , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 10
    • 33646121665 scopus 로고    scopus 로고
    • "A method for handling numerical attributes in GA-based inductive concept learners"
    • Chicago, IL, Jul. 12-16
    • F. Divina, M. Keijzer, and E. Marchiori, "A method for handling numerical attributes in GA-based inductive concept learners," in Proc. Genetic Evol. Comput. Conf., Chicago, IL, Jul. 12-16, 2003, pp. 898-908.
    • (2003) Proc. Genetic Evol. Comput. Conf. , pp. 898-908
    • Divina, F.1    Keijzer, M.2    Marchiori, E.3
  • 11
    • 0003024008 scopus 로고
    • "On the handling of continuous-valued attributes in decision tree generation"
    • U. Fayyad and K. Irani, "On the handling of continuous-valued attributes in decision tree generation," Mach. Learn., vol. 8, pp. 87-102, 1992.
    • (1992) Mach. Learn. , vol.8 , pp. 87-102
    • Fayyad, U.1    Irani, K.2
  • 13
    • 14844355607 scopus 로고    scopus 로고
    • "Non-universal suffrage selection operators favor population diversity in genetic algorithms"
    • Chicago, IL, Jul. 12-16
    • F. Divina, M. Keijzer, and E. Marchiori, "Non-universal suffrage selection operators favor population diversity in genetic algorithms," in Proc. Genetic Evol. Comput. Conf., Chicago, IL, Jul. 12-16, 2003, pp. 1571-1573.
    • (2003) Proc. Genetic Evol. Comput. Conf. , pp. 1571-1573
    • Divina, F.1    Keijzer, M.2    Marchiori, E.3
  • 15
    • 0000662737 scopus 로고    scopus 로고
    • "Search-intensive concept induction"
    • A. Giordana and F. Neri, "Search-intensive concept induction," Evol. Comput., vol. 3, no. 4, pp. 375-16, 1996.
    • (1996) Evol. Comput. , vol.3 , Issue.4 , pp. 375-416
    • Giordana, A.1    Neri, F.2
  • 16
    • 14844349315 scopus 로고    scopus 로고
    • "Evolutionary concept learning with constraints for numerical attributes"
    • Utrecht, The Netherlands, Oct. 23-24
    • F. Divina, M. Keijzer, and E. Marchiori, "Evolutionary concept learning with constraints for numerical attributes," in Proc. Belgian-Dutch Conf. Artif. Intell., Utrecht, The Netherlands, Oct. 23-24, 2003, pp. 107-114.
    • (2003) Proc. Belgian-Dutch Conf. Artif. Intell. , pp. 107-114
    • Divina, F.1    Keijzer, M.2    Marchiori, E.3
  • 17
    • 0002629270 scopus 로고
    • "Maximum likelihood from incomplete data via the EM algorithm"
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Royal Stat. Society, vol. 39, pp. 1-38, 1977.
    • (1977) J. Royal Stat. Society , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 18
    • 14844357800 scopus 로고    scopus 로고
    • UCI repository of machine learning databases. Online. Available:
    • C. Blake and C. Merz. (1998) UCI repository of machine learning databases. Online. Available: http://www.ics.uci.edu/-mlearn/ MLRepository.html
    • (1998)
    • Blake, C.1    Merz, C.2
  • 19
    • 3042845204 scopus 로고    scopus 로고
    • "From prepositional to first order logic in machine learning and data mining - Induction of first order rules with ICL"
    • Ph.D. Dissertation, Dept. Comput. Sci., K. U. Leuven, Leuven, Belgium, Jun
    • W. Van Laer, "From prepositional to first order logic in machine learning and data mining - induction of first order rules with ICL," Ph.D. Dissertation, Dept. Comput. Sci., K. U. Leuven, Leuven, Belgium, Jun. 2002.
    • (2002)
    • Laer, W.1
  • 20
    • 0026087709 scopus 로고
    • "Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity"
    • A. Debnath, R. L. de Compadre, G. Debnath, A. Schusterman, and C. Hansch, "Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity," J. Med. Chem., vol. 34, no. 2, pp. 786-797, 1991.
    • (1991) J. Med. Chem. , vol.34 , Issue.2 , pp. 786-797
    • Debnath, A.1    de Compadre, R.L.2    Debnath, G.3    Schusterman, A.4    Hansch, C.5
  • 26
    • 0003120218 scopus 로고    scopus 로고
    • "Fast training of support vector machines using sequential minimal optimization"
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," Adv. Kernel Methods: Support Vector Learn. pp. 185-208, 1999.
    • (1999) Adv. Kernel Methods: Support Vector Learn. , pp. 185-208
    • Platt, J.C.1
  • 27
    • 0025725905 scopus 로고
    • "Instance-based learning algorithms"
    • D. W. Aha, D. Kibler, and M. Albert, "Instance-based learning algorithms," Mach. Learn., vol. 6, pp. 37436, 1991.
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.3
  • 28
    • 26744460495 scopus 로고    scopus 로고
    • "Natural coding: A more efficient representation for evolutionary learning"
    • Chicago, IL, July 12-16
    • R. Giráldez, J. S. Aguilar-Ruiz, and J. C. Riquelme, "Natural coding: A more efficient representation for evolutionary learning," in Proc. Genetic Evol. Comput. Conf., Chicago, IL, July 12-16, 2003, pp. 979-990.
    • (2003) Proc. Genetic Evol. Comput. Conf. , pp. 979-990
    • Giraldez, R.1    Aguilar-Ruiz, J.S.2    Riquelme, J.C.3
  • 29
    • 14844361798 scopus 로고    scopus 로고
    • "Evolving multiple discretizations with adaptive intervals for a Pittsburgh rule-based genetic learning classifier system"
    • J. Bacardit and J. M. Garrel, "Evolving multiple discretizations with adaptive intervals for a Pittsburgh rule-based genetic learning classifier system," in Proc. Genetic Evol. Comput. Conf., 2003, pp. 1818-1831.
    • (2003) Proc. Genetic Evol. Comput. Conf. , pp. 1818-1831
    • Bacardit, J.1    Garrel, J.M.2
  • 33
    • 0032069371 scopus 로고    scopus 로고
    • "Top-down induction of first-order logical decision trees"
    • H. Blockeel and L. D. Raedt, "Top-down induction of first-order logical decision trees," Artif. Intell., vol. 101, no. 1-2, pp. 285-297, 1998.
    • (1998) Artif. Intell. , vol.101 , Issue.1-2 , pp. 285-297
    • Blockeel, H.1    Raedt, L.D.2
  • 34
    • 84947905415 scopus 로고
    • "Inductive constraint logic"
    • Berlin, Germany: Springer-Verlag, Lecture Notes in Artificial Intelligence
    • L. De Raedt and W. Van Laer, "Inductive constraint logic," in Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 1995, vol. 997, Proc. 6th Conf. Algorithmic Learning Theory, pp. 80-94.
    • (1995) Proc. 6th Conf. Algorithmic Learning Theory , vol.997 , pp. 80-94
    • Raedt, L.1    Laer, W.2
  • 37
    • 33744584654 scopus 로고
    • "Induction of decision trees"
    • Originally published in Machine Learning
    • J. R. Quinlan, "Induction of decision trees," Readings in Mach. Learn., vol. 1, pp. 81-106, 1986. Originally published in Machine Learning.
    • (1986) Readings in Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 38
    • 84956869878 scopus 로고    scopus 로고
    • "An evolutionary algorithm using multivariate discretization for decision rule induction"
    • W. Kwedlo and M. Kretowski, "An evolutionary algorithm using multivariate discretization for decision rule induction," Principles Data Mining Knowl. Discovery, pp. 392-397, 1999.
    • (1999) Principles Data Mining Knowl. Discovery , pp. 392-397
    • Kwedlo, W.1    Kretowski, M.2
  • 39
    • 79952258550 scopus 로고    scopus 로고
    • "Evolution of multi-adaptive discretization intervals for a rule-based genetic learning system"
    • Berlin, Germany: Springer-Verlag, Lecture Notes in Artificial Intelligence
    • J. Bacardit and J. M. Garrell, "Evolution of multi-adaptive discretization intervals for a rule-based genetic learning system," in Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2002, vol. 2527, Proc. Iberoamerican Conf. Artif. Intell. (IBERAMIA'2002), pp. 350-360.
    • (2002) Proc. Iberoamerican Conf. Artif. Intell. (IBERAMIA'2002) , vol.2527 , pp. 350-360
    • Bacardit, J.1    Garrell, J.M.2
  • 40
    • 0027696178 scopus 로고
    • "A knowledge intensive genetic algorithm for supervised learning"
    • C. Janikow, "A knowledge intensive genetic algorithm for supervised learning" Mach. Learn., vol. 13, pp. 198-228, 1993.
    • (1993) Mach. Learn. , vol.13 , pp. 198-228
    • Janikow, C.1
  • 41
    • 0027696338 scopus 로고
    • "Using genetic algorithms for concept learning"
    • K. D. Jong, W. Spears, and D. Gordon, "Using genetic algorithms for concept learning," Mach. Learn., vol. 13, no. 1/2, pp. 155-188, 1993.
    • (1993) Mach. Learn. , vol.13 , Issue.1-2 , pp. 155-188
    • Jong, K.D.1    Spears, W.2    Gordon, D.3
  • 43
    • 0141509929 scopus 로고    scopus 로고
    • "Supervised learning by means of accuracy-aware evolutionary algorithms"
    • J.C. Riquelme, J. S. Aguilar-Ruiz, and C. D. Valle, "Supervised learning by means of accuracy-aware evolutionary algorithms," Inf. Sci., vol. 156, no. 3-4, pp. 173-188, 2003.
    • (2003) Inf. Sci. , vol.156 , Issue.3-4 , pp. 173-188
    • Riquelme, J.C.1    Aguilar-Ruiz, J.S.2    Valle, C.D.3
  • 44
    • 0035739643 scopus 로고    scopus 로고
    • "Removing examples and discovering hierarchical decision rules with evolutionary algorithms"
    • J. S. Aguilar-Ruiz, "Removing examples and discovering hierarchical decision rules with evolutionary algorithms," Artif. Intell. Commun. vol. 14, no. 4, pp. 231-233, 2002.
    • (2002) Artif. Intell. Commun. , vol.14 , Issue.4 , pp. 231-233
    • Aguilar-Ruiz, J.S.1
  • 46
    • 85172413460 scopus 로고
    • "Learning first order logic rules with a genetic algorithm"
    • U. M. Fayyad and R. Uthurusamy, Eds
    • S. Augier, G. Venturini, and Y. Kodratoff, "Learning first order logic rules with a genetic algorithm," in Proc. 1st Int. Conf Knowl. Discovery Data Mining, U. M. Fayyad and R. Uthurusamy, Eds., 20-21, 1995, pp. 21-26.
    • (1995) Proc. 1st Int. Conf Knowl. Discovery Data Mining , vol.20-21 , pp. 21-26
    • Augier, S.1    Venturini, G.2    Kodratoff, Y.3
  • 47
    • 14844347349 scopus 로고    scopus 로고
    • "Knowledge-independent data mining with fine-grained parallel evolutionary algorithms"
    • L. Spector et al., Eds., Jul. 7-11
    • X. Llorá and J. M. Garrell et al., "Knowledge-independent data mining with fine-grained parallel evolutionary algorithms," in Proc. Genetic Evol. Comput. Conf., L. Spector et al., Eds., Jul. 7-11, 2001, pp. 461-468.
    • (2001) Proc. Genetic Evol. Comput. Conf. , pp. 461-468
    • Llora, X.1    Garrell, J.M.2
  • 48
    • 14844345875 scopus 로고    scopus 로고
    • "Inducing partially-defined instances with evolutionary algorithms"
    • X. Llorá and J. M. Garrell et al., "Inducing partially-defined instances with evolutionary algorithms," in Proc. 18th lnt. Conf. Mach. Learn. 2001, pp. 337-344.
    • (2001) Proc. 18th Lnt. Conf. Mach. Learn. , pp. 337-344
    • Llora, X.1    Garrell, J.M.2
  • 49
    • 0037297883 scopus 로고    scopus 로고
    • "Inducing oblique decision trees with evolutionary algorithms"
    • Feb
    • E. Cantu-Paz and C. Kamath, "Inducing oblique decision trees with evolutionary algorithms," IEEE Trans. Evol. Comput., vol. 7, no. 1, pp. 54-68, Feb. 2003.
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.1 , pp. 54-68
    • Cantu-Paz, E.1    Kamath, C.2
  • 50
    • 0043284110 scopus 로고    scopus 로고
    • "For real! XCS with continuous - Valued inputs"
    • C. Stone and L. Bull, "For real! XCS with continuous - Valued inputs," Evol. Comput. J.l, vol. 11, no. 3, pp. 298-336, 2003.
    • (2003) Evol. Comput. J.l , vol.2 , Issue.3 , pp. 298-336
    • Stone, C.1    Bull, L.2
  • 51
    • 0000648788 scopus 로고    scopus 로고
    • "Generalization in the XCS classifier system"
    • J. R. Koza et al., Eds.. Madison, WI
    • S. W. Wilson et al., "Generalization in the XCS classifier system," in Proc. 3rd Annu. Conf. Genetic Program., J. R. Koza et al., Eds.. Madison, WI, 22-25, 1998, pp. 665-674.
    • (1998) Proc. 3rd Annu. Conf. Genetic Program. , vol.22-25 , pp. 665-674
    • Wilson, S.W.1
  • 52
    • 0025798330 scopus 로고
    • "A distance-based attribute selection measure for decision tree induction"
    • R. L. De Mántaras, "A distance-based attribute selection measure for decision tree induction," Mach. Learn., vol. 6, no. 1, pp. 81-92, 1991.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 81-92
    • Mántaras, R.L.1
  • 53
    • 0027580356 scopus 로고
    • "Very simple classification rules perform well on most commonly used datasets"
    • R. C. Holte, "Very simple classification rules perform well on most commonly used datasets," Mach. Learn., vol. 11, no. 1, pp. 63-90, 1993.
    • (1993) Mach. Learn. , vol.2 , Issue.1 , pp. 63-90
    • Holte, R.C.1
  • 54
    • 0026995495 scopus 로고
    • "ChiMerge: Discretization of numeric attributes"
    • R. Kerber, "ChiMerge: Discretization of numeric attributes," in Proc. 10th Nat. Conf. Artif Intell., 1992, pp. 123-127.
    • (1992) Proc. 10th Nat. Conf. Artif Intell. , pp. 123-127
    • Kerber, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.