-
1
-
-
0002928014
-
Notes on word hyperbolic groups
-
ed. H. Short (World Scientific)
-
J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short, Notes on word hyperbolic groups, in Group Theory from a Geometrical Viewpoint, ed. H. Short (World Scientific, 1990), pp. 3-63.
-
(1990)
Group Theory from a Geometrical Viewpoint
, pp. 3-63
-
-
Alonso, J.M.1
Brady, T.2
Cooper, D.3
Ferlini, V.4
Lustig, M.5
Mihalik, M.6
Shapiro, M.7
Short, H.8
-
2
-
-
84972498015
-
A combination theorem for negatively curved groups
-
M. Bestvina, and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85-101.
-
(1992)
J. Differential Geom.
, vol.35
, pp. 85-101
-
-
Bestvina, M.1
Feighn, M.2
-
3
-
-
0003848050
-
-
Jones and Bartlett Publishers
-
D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups (Jones and Bartlett Publishers, 1992).
-
(1992)
Word Processing in Groups
-
-
Epstein, D.B.A.1
Cannon, J.W.2
Holt, D.F.3
Levy, S.V.F.4
Paterson, M.S.5
Thurston, W.P.6
-
4
-
-
0000427680
-
Small cancellation theory and automatic groups
-
S. M. Gersten and H. B. Short, Small cancellation theory and automatic groups, Invent. Math. 102(2) (1990) 305-334.
-
(1990)
Invent. Math.
, vol.102
, Issue.2
, pp. 305-334
-
-
Gersten, S.M.1
Short, H.B.2
-
5
-
-
0000203865
-
Rational subgroups of biautomatic groups
-
S. M. Gersten and H. B. Short, Rational subgroups of biautomatic groups, Ann. Math. 134 (1991) 125-158.
-
(1991)
Ann. Math.
, vol.134
, pp. 125-158
-
-
Gersten, S.M.1
Short, H.B.2
-
6
-
-
0003037529
-
Reducibility among combinatorial problems
-
Plenum Press, New York
-
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Calculations (Plenum Press, New York, 1972), pp. 85-104.
-
(1972)
Complexity of Computer Calculations
, pp. 85-104
-
-
Karp, R.M.1
-
7
-
-
0004418440
-
Strongly geodesically automatic groups are hyperbolic
-
P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent. Math. 121(2) (1995) 323-334.
-
(1995)
Invent. Math.
, vol.121
, Issue.2
, pp. 323-334
-
-
Papasoglu, P.1
-
8
-
-
0016433765
-
The identification of a minimal feedback vertex set of a directed graph
-
G. W. Smith and R. B. Walford, The identification of a minimal feedback vertex set of a directed graph, IEEE Trans. Circuits Syst. CAS-22 (1975) 9-15.
-
(1975)
IEEE Trans. Circuits Syst.
, vol.CAS-22
, pp. 9-15
-
-
Smith, G.W.1
Walford, R.B.2
|