-
2
-
-
0141973214
-
The stochastic nonlinear damped wave equation
-
Barbu V and Da Prato G 2002 The stochastic nonlinear damped wave equation Appl. Math. Optim. 46 125-41
-
(2002)
Appl. Math. Optim.
, vol.46
, pp. 125-141
-
-
Barbu, V.1
Da Prato, G.2
-
4
-
-
0141981964
-
Random non-linear wave equation: Smoothness of solutions
-
Carmona R and Nualart D 1993 Random non-linear wave equation: smoothness of solutions Probab. Theory Rel. Fields 95 87-102
-
(1993)
Probab. Theory Rel. Fields
, vol.95
, pp. 87-102
-
-
Carmona, R.1
Nualart, D.2
-
6
-
-
0001194946
-
Hyperbolic thermoelastisity: A review of recent literature
-
Chandrasekharaiah D S 1998 Hyperbolic thermoelastisity: a review of recent literature Appl. Mech. Rev. 51 705-29
-
(1998)
Appl. Mech. Rev.
, vol.51
, pp. 705-729
-
-
Chandrasekharaiah, D.S.1
-
7
-
-
0015665559
-
Thermoelastic wave propagation in a random medium and some related problems
-
Chow P L 1973 Thermoelastic wave propagation in a random medium and some related problems Int. J. Eng, Sci. 11 253-971
-
(1973)
Int. J. Eng, Sci.
, vol.11
, pp. 253-971
-
-
Chow, P.L.1
-
8
-
-
38249029133
-
Invariant manifolds for flows in Banach spaces
-
Chow S-N and Lu K 1988 Invariant manifolds for flows in Banach spaces J. Diff. Eqns 74 285-317
-
(1988)
J. Diff. Eqns
, vol.74
, pp. 285-317
-
-
Chow, S.-N.1
Lu, K.2
-
10
-
-
0009236990
-
Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise
-
Chueshov I 1995 Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise, J. Dyn. Diff. Eqns 7 549-66
-
(1995)
J. Dyn. Diff. Eqns
, vol.7
, pp. 549-566
-
-
Chueshov, I.1
-
12
-
-
14844292231
-
-
Chueshov 11999 Introduction to the Theory of Infinite-Dimensional Dissipative Systems (Kharkov: Acta) (in Russian) [Engl. transl. Acta Kharkov 2002] see also http://www.emis.de/monographs/Chueshov/
-
(2002)
Acta Kharkov
-
-
-
13
-
-
12444274980
-
A reduction principle for coupled nonlinear parabolic-hyperbolic PDE
-
at press
-
Chueshov I 2004 A reduction principle for coupled nonlinear parabolic-hyperbolic PDE J. Evolution Eqns at press
-
(2004)
J. Evolution Eqns
-
-
Chueshov, I.1
-
14
-
-
0009234748
-
Inertial manifolds and forms for semilinear parabolic equations subjected to additive white noise
-
Chueshov I and Girya T 1995 Inertial manifolds and forms for semilinear parabolic equations subjected to additive white noise Lett. Math. Phys. 34 69-76
-
(1995)
Lett. Math. Phys.
, vol.34
, pp. 69-76
-
-
Chueshov, I.1
Girya, T.2
-
15
-
-
14844294496
-
Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations
-
Chueshov I and Scheutzow M 2001 Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations J. Dyn. Diff. Eqns 13 355-80
-
(2001)
J. Dyn. Diff. Eqns
, vol.13
, pp. 355-380
-
-
Chueshov, I.1
Scheutzow, M.2
-
17
-
-
0032355056
-
The stochastic wave equation in two spatial dimensions
-
Dalang R and Frangos N 1998 The stochastic wave equation in two spatial dimensions Ann. Probab. 26 187-212
-
(1998)
Ann. Probab.
, vol.26
, pp. 187-212
-
-
Dalang, R.1
Frangos, N.2
-
20
-
-
0346961357
-
Invariant manifolds for stochastic partial differential equations
-
Duan J, Lu K and Schmalfuß B 2003 Invariant manifolds for stochastic partial differential equations Ann. Probab. 31 2109-35
-
(2003)
Ann. Probab.
, vol.31
, pp. 2109-2135
-
-
Duan, J.1
Lu, K.2
Schmalfuß, B.3
-
21
-
-
0000640733
-
Inertial manifolds for nonlinear evolution equations
-
Foias C, Sell G R and Temam R 1988 Inertial manifolds for nonlinear evolution equations J. Diff. Eqns 73 309-53
-
(1988)
J. Diff. Eqns
, vol.73
, pp. 309-353
-
-
Foias, C.1
Sell, G.R.2
Temam, R.3
-
23
-
-
0000195770
-
Statistical theory of effective electrical, thermal and magnetic properties of random heteregeneous materials
-
Hori M 1973 Statistical theory of effective electrical, thermal and magnetic properties of random heteregeneous materials J. Math. Phys. 14 514-23
-
(1973)
J. Math. Phys.
, vol.14
, pp. 514-523
-
-
Hori, M.1
-
25
-
-
0037219853
-
Asymptotically stable invariant manifold for coupled nonlinear parabolic-hyperbolic partial differential equations
-
Leung A W 2003 Asymptotically stable invariant manifold for coupled nonlinear parabolic-hyperbolic partial differential equations J. Diff. Eqns 187 184-200
-
(2003)
J. Diff. Eqns
, vol.187
, pp. 184-200
-
-
Leung, A.W.1
-
26
-
-
0001372244
-
A sharp condition for existence of an inertial manifold
-
Miklavčič M 1991 A sharp condition for existence of an inertial manifold J. Dyn. Diff. Eqns 3 437-56
-
(1991)
J. Dyn. Diff. Eqns
, vol.3
, pp. 437-456
-
-
Miklavčič, M.1
-
27
-
-
0035413566
-
On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution
-
Millet A and Morien P L 2001 On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution Ann. Appl. Probab. 11 922-51
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 922-951
-
-
Millet, A.1
Morien, P.L.2
-
28
-
-
0038673499
-
Approximation and support theorem for a wave equation in two space dimensions
-
Millet A and Sanz-Solé M 2000 Approximation and support theorem for a wave equation in two space dimensions Bernoulli 6 887-915
-
(2000)
Bernoulli
, vol.6
, pp. 887-915
-
-
Millet, A.1
Sanz-Solé, M.2
-
29
-
-
0031606965
-
Existence and exponential decay in nonlinear thermoelasticity
-
Munoz Rivera J E and Barreto R K 1998 Existence and exponential decay in nonlinear thermoelasticity Nonlinear Anal. 31 149-62
-
(1998)
Nonlinear Anal.
, vol.31
, pp. 149-162
-
-
Munoz, R.J.E.1
Barreto, R.K.2
-
30
-
-
0001314893
-
Smoothing properties, decay, and global existence of solutions to nonlinear coupled system of thermoelasticity type
-
Munoz Rivera J E and Racke R 1995 Smoothing properties, decay, and global existence of solutions to nonlinear coupled system of thermoelasticity type SIAM J. Math. Anal 26 1547-63
-
(1995)
SIAM J. Math. Anal
, vol.26
, pp. 1547-1563
-
-
Munoz, R.J.E.1
Racke, R.2
-
32
-
-
14844311539
-
A stochastic wave equation in dimension 3: Smoothness of the law
-
Quer-Sardanyons L and Sanz-Solé M 2004 A stochastic wave equation in dimension 3: smoothness of the law Bernoulli 10 165-86
-
(2004)
Bernoulli
, vol.10
, pp. 165-186
-
-
Quer-Sardanyons, L.1
Sanz-Solé, M.2
|