메뉴 건너뛰기




Volumn 93, Issue 2, 2005, Pages 257-266

The general common Hermitian nonnegative-definite solution to the matrix equations AXA* = BB* and CXC* = DD* with applications in statistics

Author keywords

Column space; Hermitian (symmetric) nonnegative definite solution; Hermitian (symmetric) positive definite solution; Kernel space; Linear hypothesis; Matrix equation; Moore Penrose generalized inverse; Multivariate linear model

Indexed keywords


EID: 14644443644     PISSN: 0047259X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmva.2004.04.009     Document Type: Article
Times cited : (20)

References (11)
  • 1
    • 0038425666 scopus 로고
    • Nonnegative definite and positive definite solutions to the matrix equation AXA* = B
    • Baksalary J.K. Nonnegative definite and positive definite solutions to the matrix equation AXA* = B Linear Multilinear Algebra 16 1984 133-139.
    • (1984) Linear Multilinear Algebra , vol.16 , pp. 133-139
    • Baksalary, J.K.1
  • 3
    • 0037749341 scopus 로고    scopus 로고
    • Linear matrix equations from an inverse problem of vibration theory
    • Dai H. Lancaster P. Linear matrix equations from an inverse problem of vibration theory Linear Algebra Appl. 246 1996 31-47
    • (1996) Linear Algebra Appl. , vol.246 , pp. 31-47
    • Dai, H.1    Lancaster, P.2
  • 4
    • 0347884309 scopus 로고    scopus 로고
    • Hermitian and nonnegative definite solutions of linear matrix equations
    • Groß J. Hermitian and nonnegative definite solutions of linear matrix equations Bull. Malay. Math. Soc. 21 1998 57-62
    • (1998) Bull. Malay. Math. Soc. , vol.21 , pp. 57-62
    • Groß, J.1
  • 5
    • 18144433136 scopus 로고    scopus 로고
    • Nonnegative-define and positive-definite solutions to the matrix equation AXA* = B - Revisited
    • Groß J. Nonnegative-define and positive-definite solutions to the matrix equation AXA* = B - revisited Linear Algebra Appl. 321 2000 123-129
    • (2000) Linear Algebra Appl. , vol.321 , pp. 123-129
    • Groß, J.1
  • 6
    • 0038763665 scopus 로고
    • Hermitian and nonnegative definite solutions of linear matrix equations
    • Khatri C.G. Mitra S.K. Hermitian and nonnegative definite solutions of linear matrix equations SIAM J. Appl. Math. 31 1976 579-585
    • (1976) SIAM J. Appl. Math. , vol.31 , pp. 579-585
    • Khatri, C.G.1    Mitra, S.K.2
  • 7
    • 0002103955 scopus 로고
    • When does rank (A+B) = rank A + rank B?
    • Marsaglia G. Styan G.P.H. When does rank (A+B) = rank A + rank B? Canad. Math. Bull. 15 1972 451-452
    • (1972) Canad. Math. Bull. , vol.15 , pp. 451-452
    • Marsaglia, G.1    Styan, G.P.H.2
  • 10
    • 0343621607 scopus 로고    scopus 로고
    • Independence distribution preserving covariance structures for the multivariate model
    • Young D.M. Seaman J.W.Jr. Meaux L.M. Independence distribution preserving covariance structures for the multivariate model J. Multivariate Anal. 68 1999 165-175
    • (1999) J. Multivariate Anal. , vol.68 , pp. 165-175
    • Young, D.M.1    Seaman Jr., J.W.2    Meaux, L.M.3
  • 11
    • 0038638353 scopus 로고    scopus 로고
    • The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B
    • Zhang X. Cheng M.Y. The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B Linear Algebra Appl. 370 2003 163-174
    • (2003) Linear Algebra Appl. , vol.370 , pp. 163-174
    • Zhang, X.1    Cheng, M.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.