메뉴 건너뛰기




Volumn 42, Issue 1, 2005, Pages 185-198

Extinction probability in a birth-death process with killing

Author keywords

Absorption; Decay parameter; Extinction time; Logarithmic norm; Persistence time; Rate of convergence

Indexed keywords


EID: 14644433474     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1110381380     Document Type: Article
Times cited : (31)

References (29)
  • 2
    • 1842457641 scopus 로고    scopus 로고
    • Quasi-stationary distributions of a pair of Markov chains related to time evolution of a DNA locus
    • BOBROWSKI, A. (2004). Quasi-stationary distributions of a pair of Markov chains related to time evolution of a DNA locus. Adv. Appl. Prob. 36, 56-77.
    • (2004) Adv. Appl. Prob. , vol.36 , pp. 56-77
    • Bobrowski, A.1
  • 3
    • 0000229194 scopus 로고
    • The extinction time of a general birth and death process with catastrophes
    • BROCKWELL, P. J. (1986). The extinction time of a general birth and death process with catastrophes. J. Appl. Prob. 23, 851-858.
    • (1986) J. Appl. Prob. , vol.23 , pp. 851-858
    • Brockwell, P.J.1
  • 5
    • 51249171577 scopus 로고
    • 2-spectral gap for Markov processes
    • 2-spectral gap for Markov processes. Acta Math. Sinica (N.S.) 7, 19-37.
    • (1991) Acta Math. Sinica (N.S.) , vol.7 , pp. 19-37
    • Chen, M.F.1
  • 6
    • 0000699604 scopus 로고    scopus 로고
    • Estimation of the spectral gap for Markov chains
    • CHEN, M. F. (1996). Estimation of the spectral gap for Markov chains. Acta Math. Sinica (N.S.) 12, 337-360.
    • (1996) Acta Math. Sinica (N.S.) , vol.12 , pp. 337-360
    • Chen, M.F.1
  • 8
    • 18444369864 scopus 로고
    • (North-Holland Ser. Appl. Math. Mech.), 2nd edn. North-Holland, Amsterdam
    • COHEN, J. W. (1982). The Single Server Queue (North-Holland Ser. Appl. Math. Mech. 8), 2nd edn. North-Holland, Amsterdam.
    • (1982) The Single Server Queue , vol.8
    • Cohen, J.W.1
  • 9
    • 0034701960 scopus 로고    scopus 로고
    • Further results on the relationship between μ-invariant measures and quasi-stationary distributions for absorbing continuous-time Markov chains
    • ELMES, S., POLLETT, P. AND WALKER, D. (2000). Further results on the relationship between μ-invariant measures and quasi-stationary distributions for absorbing continuous-time Markov chains. Math. Comput. Modelling 31, 107-113.
    • (2000) Math. Comput. Modelling , vol.31 , pp. 107-113
    • Elmes, S.1    Pollett, P.2    Walker, D.3
  • 11
    • 18444402697 scopus 로고
    • The limiting behavior of transient birth and death processes conditioned on survival
    • GOOD, P. (1968). The limiting behavior of transient birth and death processes conditioned on survival. J. Austral. Math. Soc. 8, 716-722.
    • (1968) J. Austral. Math. Soc. , vol.8 , pp. 716-722
    • Good, P.1
  • 12
    • 0031521244 scopus 로고    scopus 로고
    • The decay function of nonhomogeneous birth-death processes, with applications to mean-field models
    • GRANOVSKY, B. L. AND ZEIFMAN, A. I. (1997). The decay function of nonhomogeneous birth-death processes, with applications to mean-field models. Stock. Process. Appl. 72, 105-120.
    • (1997) Stock. Process. Appl. , vol.72 , pp. 105-120
    • Granovsky, B.L.1    Zeifman, A.I.2
  • 13
    • 0034290393 scopus 로고    scopus 로고
    • The N-limit of spectral gap of a class of birth-death Markov chains
    • GRANOVSKY, B. L. AND ZEIFMAN, A. I. (2000). The N-limit of spectral gap of a class of birth-death Markov chains. Appl. Stoch. Models Business Industry 16, 235-248.
    • (2000) Appl. Stoch. Models Business Industry , vol.16 , pp. 235-248
    • Granovsky, B.L.1    Zeifman, A.I.2
  • 14
    • 3543051740 scopus 로고    scopus 로고
    • Nonstationary queues: Estimation of the rate of convergence
    • GRANOVSKY, B. L. AND ZEIFMAN, A. I. (2004). Nonstationary queues: estimation of the rate of convergence. Queueing Systems 46, 363-388.
    • (2004) Queueing Systems , vol.46 , pp. 363-388
    • Granovsky, B.L.1    Zeifman, A.I.2
  • 15
    • 21844488698 scopus 로고
    • Weak convergence of conditioned processes on a countable state space
    • JACKA, S. D. AND ROBERTS, G. O. (1995). Weak convergence of conditioned processes on a countable state space. J. Appl. Prob. 32, 902-916.
    • (1995) J. Appl. Prob. , vol.32 , pp. 902-916
    • Jacka, S.D.1    Roberts, G.O.2
  • 16
    • 0000036102 scopus 로고
    • The differential equations of birth-and-death processes, and the Stieltjes moment problem
    • KARLIN, S. AND MCGREGOR, J. L. (1957). The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85, 589-646.
    • (1957) Trans. Amer. Math. Soc. , vol.85 , pp. 589-646
    • Karlin, S.1    McGregor, J.L.2
  • 17
    • 0001045289 scopus 로고
    • Linear birth and death processes with killing
    • KARLIN, S. AND TAVARÉ, S. (1982). Linear birth and death processes with killing. J. Appl. Prob. 19, 477-487.
    • (1982) J. Appl. Prob. , vol.19 , pp. 477-487
    • Karlin, S.1    Tavaré, S.2
  • 18
    • 18444404246 scopus 로고    scopus 로고
    • Calculation of the exponential ergodicity exponent for birth-death processes
    • KARTASHOV, N. V. (1998). Calculation of the exponential ergodicity exponent for birth-death processes. Theory Prob. Math. Statist. 57, 53-60.
    • (1998) Theory Prob. Math. Statist. , vol.57 , pp. 53-60
    • Kartashov, N.V.1
  • 19
    • 21144472761 scopus 로고
    • Evaluation of the decay parameter for some specialized birth-death processes
    • KIJIMA, M. (1992). Evaluation of the decay parameter for some specialized birth-death processes. J. Appl. Prob. 29, 781-791.
    • (1992) J. Appl. Prob. , vol.29 , pp. 781-791
    • Kijima, M.1
  • 20
    • 84960569835 scopus 로고
    • The exponential decay of Markov transition probabilities
    • KINGMAN, J. F. C. (1963). The exponential decay of Markov transition probabilities. Proc. London Math. Soc. 13, 337-358.
    • (1963) Proc. London Math. Soc. , vol.13 , pp. 337-358
    • Kingman, J.F.C.1
  • 22
    • 0001722126 scopus 로고
    • Quasi-stationary laws for Markov processes: Examples of an always proximate absorbing state
    • PAKES, A. G. (1995). Quasi-stationary laws for Markov processes: examples of an always proximate absorbing state. Adv. Appl. Prob. 27, 120-145.
    • (1995) Adv. Appl. Prob. , vol.27 , pp. 120-145
    • Pakes, A.G.1
  • 23
    • 0000783136 scopus 로고
    • Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process
    • VAN DOORN, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv. Appl. Prob. 17, 514-530.
    • (1985) Adv. Appl. Prob. , vol.17 , pp. 514-530
    • Van Doorn, E.A.1
  • 24
    • 0000381122 scopus 로고
    • Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes
    • VAN DOORN, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Prob. 23, 683-700.
    • (1991) Adv. Appl. Prob. , vol.23 , pp. 683-700
    • Van Doorn, E.A.1
  • 25
    • 0038313575 scopus 로고    scopus 로고
    • Representations for the rate of convergence of birth-death processes
    • VAN DOORN, E. A. (2002). Representations for the rate of convergence of birth-death processes. Theory Prob. Math. Statist. 65, 37-43.
    • (2002) Theory Prob. Math. Statist. , vol.65 , pp. 37-43
    • Van Doorn, E.A.1
  • 27
    • 0001800918 scopus 로고
    • Some estimates of the rate of convergence for birth and death processes
    • ZEIFMAN, A. I. (1991). Some estimates of the rate of convergence for birth and death processes. J. Appl. Prob. 28, 268-277.
    • (1991) J. Appl. Prob. , vol.28 , pp. 268-277
    • Zeifman, A.I.1
  • 28
    • 0029367778 scopus 로고
    • On the estimation of probabilities for birth and death processes
    • ZEIFMAN, A. I. (1995). On the estimation of probabilities for birth and death processes. J. Appl. Prob. 32, 623-634.
    • (1995) J. Appl. Prob. , vol.32 , pp. 623-634
    • Zeifman, A.I.1
  • 29
    • 0010910531 scopus 로고
    • Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes
    • ZEIFMAN, A. I. (1995). Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stock. Process. Appl. 59, 157-173.
    • (1995) Stock. Process. Appl. , vol.59 , pp. 157-173
    • Zeifman, A.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.