-
2
-
-
1842457641
-
Quasi-stationary distributions of a pair of Markov chains related to time evolution of a DNA locus
-
BOBROWSKI, A. (2004). Quasi-stationary distributions of a pair of Markov chains related to time evolution of a DNA locus. Adv. Appl. Prob. 36, 56-77.
-
(2004)
Adv. Appl. Prob.
, vol.36
, pp. 56-77
-
-
Bobrowski, A.1
-
3
-
-
0000229194
-
The extinction time of a general birth and death process with catastrophes
-
BROCKWELL, P. J. (1986). The extinction time of a general birth and death process with catastrophes. J. Appl. Prob. 23, 851-858.
-
(1986)
J. Appl. Prob.
, vol.23
, pp. 851-858
-
-
Brockwell, P.J.1
-
4
-
-
18444403035
-
-
Preprint, University of Queensland
-
CHEN, A., POLLETT, P., ZHANG, H. AND CAIRNS, B. (2004). Uniqueness criteria for continuous-time Markov chains with general transition structure. Preprint, University of Queensland.
-
(2004)
Uniqueness Criteria for Continuous-time Markov Chains with General Transition Structure
-
-
Chen, A.1
Pollett, P.2
Zhang, H.3
Cairns, B.4
-
5
-
-
51249171577
-
2-spectral gap for Markov processes
-
2-spectral gap for Markov processes. Acta Math. Sinica (N.S.) 7, 19-37.
-
(1991)
Acta Math. Sinica (N.S.)
, vol.7
, pp. 19-37
-
-
Chen, M.F.1
-
6
-
-
0000699604
-
Estimation of the spectral gap for Markov chains
-
CHEN, M. F. (1996). Estimation of the spectral gap for Markov chains. Acta Math. Sinica (N.S.) 12, 337-360.
-
(1996)
Acta Math. Sinica (N.S.)
, vol.12
, pp. 337-360
-
-
Chen, M.F.1
-
8
-
-
18444369864
-
-
(North-Holland Ser. Appl. Math. Mech.), 2nd edn. North-Holland, Amsterdam
-
COHEN, J. W. (1982). The Single Server Queue (North-Holland Ser. Appl. Math. Mech. 8), 2nd edn. North-Holland, Amsterdam.
-
(1982)
The Single Server Queue
, vol.8
-
-
Cohen, J.W.1
-
9
-
-
0034701960
-
Further results on the relationship between μ-invariant measures and quasi-stationary distributions for absorbing continuous-time Markov chains
-
ELMES, S., POLLETT, P. AND WALKER, D. (2000). Further results on the relationship between μ-invariant measures and quasi-stationary distributions for absorbing continuous-time Markov chains. Math. Comput. Modelling 31, 107-113.
-
(2000)
Math. Comput. Modelling
, vol.31
, pp. 107-113
-
-
Elmes, S.1
Pollett, P.2
Walker, D.3
-
11
-
-
18444402697
-
The limiting behavior of transient birth and death processes conditioned on survival
-
GOOD, P. (1968). The limiting behavior of transient birth and death processes conditioned on survival. J. Austral. Math. Soc. 8, 716-722.
-
(1968)
J. Austral. Math. Soc.
, vol.8
, pp. 716-722
-
-
Good, P.1
-
12
-
-
0031521244
-
The decay function of nonhomogeneous birth-death processes, with applications to mean-field models
-
GRANOVSKY, B. L. AND ZEIFMAN, A. I. (1997). The decay function of nonhomogeneous birth-death processes, with applications to mean-field models. Stock. Process. Appl. 72, 105-120.
-
(1997)
Stock. Process. Appl.
, vol.72
, pp. 105-120
-
-
Granovsky, B.L.1
Zeifman, A.I.2
-
13
-
-
0034290393
-
The N-limit of spectral gap of a class of birth-death Markov chains
-
GRANOVSKY, B. L. AND ZEIFMAN, A. I. (2000). The N-limit of spectral gap of a class of birth-death Markov chains. Appl. Stoch. Models Business Industry 16, 235-248.
-
(2000)
Appl. Stoch. Models Business Industry
, vol.16
, pp. 235-248
-
-
Granovsky, B.L.1
Zeifman, A.I.2
-
14
-
-
3543051740
-
Nonstationary queues: Estimation of the rate of convergence
-
GRANOVSKY, B. L. AND ZEIFMAN, A. I. (2004). Nonstationary queues: estimation of the rate of convergence. Queueing Systems 46, 363-388.
-
(2004)
Queueing Systems
, vol.46
, pp. 363-388
-
-
Granovsky, B.L.1
Zeifman, A.I.2
-
15
-
-
21844488698
-
Weak convergence of conditioned processes on a countable state space
-
JACKA, S. D. AND ROBERTS, G. O. (1995). Weak convergence of conditioned processes on a countable state space. J. Appl. Prob. 32, 902-916.
-
(1995)
J. Appl. Prob.
, vol.32
, pp. 902-916
-
-
Jacka, S.D.1
Roberts, G.O.2
-
16
-
-
0000036102
-
The differential equations of birth-and-death processes, and the Stieltjes moment problem
-
KARLIN, S. AND MCGREGOR, J. L. (1957). The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85, 589-646.
-
(1957)
Trans. Amer. Math. Soc.
, vol.85
, pp. 589-646
-
-
Karlin, S.1
McGregor, J.L.2
-
17
-
-
0001045289
-
Linear birth and death processes with killing
-
KARLIN, S. AND TAVARÉ, S. (1982). Linear birth and death processes with killing. J. Appl. Prob. 19, 477-487.
-
(1982)
J. Appl. Prob.
, vol.19
, pp. 477-487
-
-
Karlin, S.1
Tavaré, S.2
-
18
-
-
18444404246
-
Calculation of the exponential ergodicity exponent for birth-death processes
-
KARTASHOV, N. V. (1998). Calculation of the exponential ergodicity exponent for birth-death processes. Theory Prob. Math. Statist. 57, 53-60.
-
(1998)
Theory Prob. Math. Statist.
, vol.57
, pp. 53-60
-
-
Kartashov, N.V.1
-
19
-
-
21144472761
-
Evaluation of the decay parameter for some specialized birth-death processes
-
KIJIMA, M. (1992). Evaluation of the decay parameter for some specialized birth-death processes. J. Appl. Prob. 29, 781-791.
-
(1992)
J. Appl. Prob.
, vol.29
, pp. 781-791
-
-
Kijima, M.1
-
20
-
-
84960569835
-
The exponential decay of Markov transition probabilities
-
KINGMAN, J. F. C. (1963). The exponential decay of Markov transition probabilities. Proc. London Math. Soc. 13, 337-358.
-
(1963)
Proc. London Math. Soc.
, vol.13
, pp. 337-358
-
-
Kingman, J.F.C.1
-
21
-
-
0034337864
-
Families of birth-death processes with similar time-dependent behaviour
-
LENIN, R. B., PARTHASARATHY, P. R., SCHEINHARDT, W. R. W. AND VAN DOORN, E. A. (2000). Families of birth-death processes with similar time-dependent behaviour. J. Appl. Prob. 37, 835-849.
-
(2000)
J. Appl. Prob.
, vol.37
, pp. 835-849
-
-
Lenin, R.B.1
Parthasarathy, P.R.2
Scheinhardt, W.R.W.3
Van Doorn, E.A.4
-
22
-
-
0001722126
-
Quasi-stationary laws for Markov processes: Examples of an always proximate absorbing state
-
PAKES, A. G. (1995). Quasi-stationary laws for Markov processes: examples of an always proximate absorbing state. Adv. Appl. Prob. 27, 120-145.
-
(1995)
Adv. Appl. Prob.
, vol.27
, pp. 120-145
-
-
Pakes, A.G.1
-
23
-
-
0000783136
-
Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process
-
VAN DOORN, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv. Appl. Prob. 17, 514-530.
-
(1985)
Adv. Appl. Prob.
, vol.17
, pp. 514-530
-
-
Van Doorn, E.A.1
-
24
-
-
0000381122
-
Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes
-
VAN DOORN, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Prob. 23, 683-700.
-
(1991)
Adv. Appl. Prob.
, vol.23
, pp. 683-700
-
-
Van Doorn, E.A.1
-
25
-
-
0038313575
-
Representations for the rate of convergence of birth-death processes
-
VAN DOORN, E. A. (2002). Representations for the rate of convergence of birth-death processes. Theory Prob. Math. Statist. 65, 37-43.
-
(2002)
Theory Prob. Math. Statist.
, vol.65
, pp. 37-43
-
-
Van Doorn, E.A.1
-
27
-
-
0001800918
-
Some estimates of the rate of convergence for birth and death processes
-
ZEIFMAN, A. I. (1991). Some estimates of the rate of convergence for birth and death processes. J. Appl. Prob. 28, 268-277.
-
(1991)
J. Appl. Prob.
, vol.28
, pp. 268-277
-
-
Zeifman, A.I.1
-
28
-
-
0029367778
-
On the estimation of probabilities for birth and death processes
-
ZEIFMAN, A. I. (1995). On the estimation of probabilities for birth and death processes. J. Appl. Prob. 32, 623-634.
-
(1995)
J. Appl. Prob.
, vol.32
, pp. 623-634
-
-
Zeifman, A.I.1
-
29
-
-
0010910531
-
Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes
-
ZEIFMAN, A. I. (1995). Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stock. Process. Appl. 59, 157-173.
-
(1995)
Stock. Process. Appl.
, vol.59
, pp. 157-173
-
-
Zeifman, A.I.1
|