메뉴 건너뛰기




Volumn 5, Issue 5, 2001, Pages 431-438

A discretization method for rough sets theory

Author keywords

degree of freedom; discretization; Rough Sets Theory

Indexed keywords

DEGREES OF FREEDOM (MECHANICS); DISCRETE EVENT SIMULATION; MEDICAL COMPUTING; MERGING; VOLUME MEASUREMENT;

EID: 14644393201     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2001-5506     Document Type: Article
Times cited : (16)

References (18)
  • 1
    • 0028565943 scopus 로고
    • Bottom-up induction of oblivious read-once decision graphs: Strengths and limitation
    • AAAI Press
    • R. Kohavi, Bottom-up induction of oblivious read-once decision graphs: strengths and limitation, in Proceedings of the 12th National Conference on Artificial Intelligence, AAAI Press, 1994, pp. 613-618.
    • (1994) Proceedings of the 12th National Conference on Artificial Intelligence , pp. 613-618
    • Kohavi, R.1
  • 5
    • 0026908146 scopus 로고
    • Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory
    • R. Nowicki, R. Slowinski and J. Stefanowski, Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory, Computers in Industry 20 (1992), 141-152.
    • (1992) Computers in Industry , vol.20 , pp. 141-152
    • Nowicki, R.1    Slowinski, R.2    Stefanowski, J.3
  • 6
    • 0012923406 scopus 로고
    • An application of Datalogic/R knowledge discovery tool to identify strong predictive rules in stock market data
    • Washington, DC
    • W. Ziarko, R. Golan and D. Edwards, An application of Datalogic/R knowledge discovery tool to identify strong predictive rules in stock market data, in Proceedings of AAAI Workshop on Knowledge Discovery in Databases, Washington, DC, 1993, pp. 93-101.
    • (1993) Proceedings of AAAI Workshop on Knowledge Discovery in Databases , pp. 93-101
    • Ziarko, W.1    Golan, R.2    Edwards, D.3
  • 7
    • 0034249467 scopus 로고    scopus 로고
    • Fault diagnosis using rough sets theory
    • L. Shen, E.H. Tay, L. Qu and Y. Shen, Fault Diagnosis Using Rough Sets Theory, Computers in Industry 43(1) (2000), 61-72.
    • (2000) Computers in Industry , vol.43 , Issue.1 , pp. 61-72
    • Shen, L.1    Tay, E.H.2    Qu, L.3    Shen, Y.4
  • 8
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Morgan Kaufmann San Francisco Calif
    • J. Dougherty, R.Kohavi and M. Sahami, Supervised and Unsupervised Discretization of Continuous Features, in Machine Learning: Proc. 12th Int'l Conf., Morgan Kaufmann, San Francisco, Calif., 1995, pp. 194-202.
    • (1995) Machine Learning: Proc. 12th Int'l Conf , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 9
    • 0000864105 scopus 로고    scopus 로고
    • Global discretization of continuous attributes as preprocessing for machine learning
    • M. Chmielewski and J. Grzrmala-Busse, Global Discretization of Continuous Attributes as Preprocessing for Machine Learning, International Journal of Approximate Reasoning 15(4) (1996), 319-331.
    • (1996) International Journal of Approximate Reasoning , vol.15 , Issue.4 , pp. 319-331
    • Chmielewski, M.1    Grzrmala-Busse, J.2
  • 12
    • 0031189159 scopus 로고    scopus 로고
    • Feature selection via discretization of numeric attributes
    • H. Liu and R. Setiono, Feature Selection via Discretization of Numeric Attributes, IEEE Trans. Knowledge and Data Engineering 9(4) (1997), 642-645.
    • (1997) IEEE Trans. Knowledge and Data Engineering , vol.9 , Issue.4 , pp. 642-645
    • Liu, H.1    Setiono, R.2
  • 13
    • 0005942017 scopus 로고    scopus 로고
    • Project Report, Knowledge Systems Group, Department of Computer Systems and Telematics, The Norwegian Institute of Technology, University of Trondheim
    • K.M. Risvik, Discretization of Numerical Attributes, Preprocessing for Machine Learning, Project Report, Knowledge Systems Group, Department of Computer Systems and Telematics, The Norwegian Institute of Technology, University of Trondheim, 1997.
    • (1997) Discretization of Numerical Attributes, Preprocessing for Machine Learning
    • Risvik, K.M.1
  • 17
    • 4243998561 scopus 로고
    • Computer systems that learn: Calssification and prediction methods from statistics
    • Morgan Kaufmann, San Mateo, Calif
    • S.M.Weiss and C.A. Kulikowski, Computer Systems That Learn: Calssification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, Morgan Kaufmann, San Mateo, Calif., 1990.
    • (1990) Neural Nets, Machine Learning, and Expert Systems
    • Weiss, S.M.1    Kulikowski, C.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.