메뉴 건너뛰기




Volumn , Issue , 2004, Pages 135-140

Short-term load forecasting using optimized neural network with genetic algorithm

Author keywords

Bayesian regularization; Genetic algorithm; Neural networks; Short term load forecasting

Indexed keywords

BAYESIAN REGULARIZATION; NONPARAMETRIC REGRESSION; SHORT-TERM LOAD FORECASTING (STLF); WEATHER CONDITIONS;

EID: 14544293464     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (18)
  • 1
    • 0037409059 scopus 로고    scopus 로고
    • Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the researcher
    • June
    • K. Metaxiotis, A. Kagiannas, D. Askounis, and J. Psarras, "Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the researcher," Energy Conversion and Management, vol. 44, pp. 1525-1534, June 2003.
    • (2003) Energy Conversion and Management , vol.44 , pp. 1525-1534
    • Metaxiotis, K.1    Kagiannas, A.2    Askounis, D.3    Psarras, J.4
  • 2
    • 0036275409 scopus 로고    scopus 로고
    • Electric load forecasting: Literature survey and classification of methods
    • Jan.
    • H. K. Alfares and M. Nazeeruddin, "Electric load forecasting: Literature survey and classification of methods," International Journal of Systems Science, vol. 33, pp. 23-34, Jan. 2002.
    • (2002) International Journal of Systems Science , vol.33 , pp. 23-34
    • Alfares, H.K.1    Nazeeruddin, M.2
  • 3
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • Feb.
    • H. S. Hippert, C. E. Pedreira, and R. C. Souza, "Neural networks for short-term load forecasting: A review and evaluation," IEEE Trans. Power Systems, vol. 16, pp. 44-55, Feb. 2001.
    • (2001) IEEE Trans. Power Systems , vol.16 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 6
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • Jan.
    • F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, "Tuning of the structure and parameters of a neural network using an improved genetic algorithm," IEEE Trans. Neural Networks, vol. 14, pp. 79-88, Jan. 2003.
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 79-88
    • Leung, F.H.F.1    Lam, H.K.2    Ling, S.H.3    Tam, P.K.S.4
  • 7
    • 0012582658 scopus 로고    scopus 로고
    • Industrial applications of soft computing: A review
    • Sep.
    • Y. Dote and S. J. Ovaska, "Industrial applications of soft computing: A review," Proceedings of the IEEE, vol. 89, pp. 1243-1265, Sep. 2001.
    • (2001) Proceedings of the IEEE , vol.89 , pp. 1243-1265
    • Dote, Y.1    Ovaska, S.J.2
  • 8
    • 13944259856 scopus 로고    scopus 로고
    • Short term load forecasting of Iran national power system using artificial neural network
    • Porto, Portugal, Sep.
    • S. Barghinia, P. Ansarimehr, H. Habibi, and N. Vafadar, "Short term load forecasting of Iran national power system using artificial neural network," in Proc. of the 2001 Power Tech, Porto, Portugal, Sep. 2001.
    • (2001) Proc. of the 2001 Power Tech
    • Barghinia, S.1    Ansarimehr, P.2    Habibi, H.3    Vafadar, N.4
  • 10
    • 0036279533 scopus 로고    scopus 로고
    • Short-term power load forecasting by non-fixed neural network model with fuzzy BP learning algorithm
    • H. C. Huang, R. C. Hwang, and J. G. Hsieh, "Short-term power load forecasting by non-fixed neural network model with fuzzy BP learning algorithm," International Journal of Power and Energy System, vol. 22, no. 1, pp. 50-57, 2002.
    • (2002) International Journal of Power and Energy System , vol.22 , Issue.1 , pp. 50-57
    • Huang, H.C.1    Hwang, R.C.2    Hsieh, J.G.3
  • 11
    • 3442899763 scopus 로고    scopus 로고
    • Short term load forecasting using a multilayer neural network with BP-GA mixed algorithm
    • June
    • Y. X. Yang, D. Liu, Q. Li, and G. Zheng, "Short term load forecasting using a multilayer neural network with BP-GA mixed algorithm," Information and Control, vol. 21, pp. 284-288, June 2002.
    • (2002) Information and Control , vol.21 , pp. 284-288
    • Yang, Y.X.1    Liu, D.2    Li, Q.3    Zheng, G.4
  • 13
    • 0003420910 scopus 로고
    • The cascade-correlation learning architecture
    • School of Computer Science, Carnegie Mellon University, Feb.
    • S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture," Tech. Rep. CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Feb. 1990.
    • (1990) Tech. Rep. , vol.CMU-CS-90-100
    • Fahlman, S.E.1    Lebiere, C.2
  • 14
    • 0032495097 scopus 로고    scopus 로고
    • Evolving artificial neural networks for short term load forecasting
    • Dec.
    • D. Srinivasan, "Evolving artificial neural networks for short term load forecasting," Neurocomputing, vol. 23, pp. 265-276, Dec. 1998.
    • (1998) Neurocomputing , vol.23 , pp. 265-276
    • Srinivasan, D.1
  • 17
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • May
    • D. J. C. MacKay, "Bayesian interpolation," Neural Computation, vol. 4, pp. 415-447, May 1992.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 18
    • 0004164013 scopus 로고    scopus 로고
    • Ch. 11. Practical Aspects of Using Neural Networks, New York, NY: John Wiley & Sons, Inc.
    • L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in Engineering, Ch. 11. Practical Aspects of Using Neural Networks, pp. 385-405. New York, NY: John Wiley & Sons, Inc., 1996.
    • (1996) Fuzzy and Neural Approaches in Engineering , pp. 385-405
    • Tsoukalas, L.H.1    Uhrig, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.