-
1
-
-
0000343907
-
On the number of positive solutions of some semilinear Dirichlet problems in a ball
-
Adimurthi, F. Pacella and S. L. Yadava. On the number of positive solutions of some semilinear Dirichlet problems in a ball. Diff. Integ. Eqns 10 (1997), 1157-1170.
-
(1997)
Diff. Integ. Eqns
, vol.10
, pp. 1157-1170
-
-
Adimurthi1
Pacella, F.2
Yadava, S.L.3
-
2
-
-
0000049245
-
Combined effects of concave and convex nonlinearities in some elliptic problems
-
A. Ambrosetti, H. Brezis and G. Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Analysis 122 (1994), 519-543.
-
(1994)
J. Funct. Analysis
, vol.122
, pp. 519-543
-
-
Ambrosetti, A.1
Brezis, H.2
Cerami, G.3
-
3
-
-
38249038697
-
Emden-Fowler equations involving critical exponents
-
F. V. Atkinson and L. A. Peletier. Emden-Fowler equations involving critical exponents. J. Nonlin. Analysis 10 (1988), 755-771.
-
(1988)
J. Nonlin. Analysis
, vol.10
, pp. 755-771
-
-
Atkinson, F.V.1
Peletier, L.A.2
-
4
-
-
84990613834
-
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
-
H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983), 437-477.
-
(1983)
Commun. Pure Appl. Math.
, vol.36
, pp. 437-477
-
-
Brezis, H.1
Nirenberg, L.2
-
5
-
-
0005437692
-
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
-
L. Damascelli, M. Grossi and F. Pacella. Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Annls Inst. H. Poincaré Analyse Non Linéaire 16 (1999), 631-652.
-
(1999)
Annls Inst. H. Poincaré Analyse Non Linéaire
, vol.16
, pp. 631-652
-
-
Damascelli, L.1
Grossi, M.2
Pacella, F.3
-
6
-
-
0001410150
-
Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball
-
L. Erbe and M. Tang. Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball. J. Diff. Eqns 138 (1997), 351-379.
-
(1997)
J. Diff. Eqns
, vol.138
, pp. 351-379
-
-
Erbe, L.1
Tang, M.2
-
7
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
B. Gidas, W. M. Ni and L. Nirenberg. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979), 209-243.
-
(1979)
Commun. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
8
-
-
0036789599
-
On uniqueness of positive solutions for a class of semilinear equations
-
P. Korman. On uniqueness of positive solutions for a class of semilinear equations. Discrete Contin. Dynam. Syst. 8 (2002), 865-871.
-
(2002)
Discrete Contin. Dynam. Syst.
, vol.8
, pp. 865-871
-
-
Korman, P.1
-
9
-
-
21344474527
-
Exact multiplicity results for boundary value problems with nonlinearities generalizing cubic
-
P. Korman, Yi Li and T. Ouyang. Exact multiplicity results for boundary value problems with nonlinearities generalizing cubic. Proc. R. Soc. Edinb. A126 (1996), 599-616.
-
(1996)
Proc. R. Soc. Edinb. A
, vol.126
, pp. 599-616
-
-
Korman, P.1
Li, Y.2
Ouyang, T.3
-
10
-
-
0000411957
-
An exact multiplicity result for a class of semilinear equations
-
P. Korman, Yi Li and T. Ouyang. An exact multiplicity result for a class of semilinear equations. Commun. PDEs 22 (1997), 661-684.
-
(1997)
Commun. PDEs
, vol.22
, pp. 661-684
-
-
Korman, P.1
Li, Y.2
Ouyang, T.3
-
11
-
-
84966214197
-
A counterexample to the nodal domain conjecture and a related semilinear elliptic equation
-
C.-S. Lin and W.-M. Ni. A counterexample to the nodal domain conjecture and a related semilinear elliptic equation. Proc. Am. Math. Soc. 102 (1988), 271-277.
-
(1988)
Proc. Am. Math. Soc.
, vol.102
, pp. 271-277
-
-
Lin, C.-S.1
Ni, W.-M.2
-
12
-
-
0002415248
-
Nonexistence theorems for quasilinear partial differential equations
-
W.-M. Ni and J. Serrin. Nonexistence theorems for quasilinear partial differential equations. Rendi. Circ. Mat. Palermo 8 (1985), 171-185.
-
(1985)
Rendi. Circ. Mat. Palermo
, vol.8
, pp. 171-185
-
-
Ni, W.-M.1
Serrin, J.2
-
13
-
-
0001602653
-
Exact multiplicity of positive solutions for a class of semilinear problems
-
T. Ouyang and J. Shi. Exact multiplicity of positive solutions for a class of semilinear problems. J. Diff. Eqns 146 (1998), 121-156.
-
(1998)
J. Diff. Eqns
, vol.146
, pp. 121-156
-
-
Ouyang, T.1
Shi, J.2
-
14
-
-
0002608722
-
Exact multiplicity of positive solutions for a class of semilinear problem. II
-
T. Ouyang and J. Shi. Exact multiplicity of positive solutions for a class of semilinear problem. II. J. Diff. Eqns 158 (1999), 94-151.
-
(1999)
J. Diff. Eqns
, vol.158
, pp. 94-151
-
-
Ouyang, T.1
Shi, J.2
-
15
-
-
0001648137
-
A general variational identity
-
P. Pucci and J. Serrin. A general variational identity. Indiana Univ. Math. J. 35 (1986), 681-703.
-
(1986)
Indiana Univ. Math. J.
, vol.35
, pp. 681-703
-
-
Pucci, P.1
Serrin, J.2
-
16
-
-
0000820023
-
Uniqueness of ground states for quasilinear elliptic equations
-
J. Serrin and M. Tang. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49 (2000), 897-923.
-
(2000)
Indiana Univ. Math. J.
, vol.49
, pp. 897-923
-
-
Serrin, J.1
Tang, M.2
-
17
-
-
0040536711
-
Classification of positive solutions of quasilinear elliptic equations
-
J. Serrin and H. Zou. Classification of positive solutions of quasilinear elliptic equations. Topolog. Meth. Nonlin. Analysis 3 (1994), 1-26.
-
(1994)
Topolog. Meth. Nonlin. Analysis
, vol.3
, pp. 1-26
-
-
Serrin, J.1
Zou, H.2
-
18
-
-
0035613628
-
Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity
-
J. Shi and R. Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete Contin. Dynam. Syst. 7 (2001), 559-571.
-
(2001)
Discrete Contin. Dynam. Syst.
, vol.7
, pp. 559-571
-
-
Shi, J.1
Shivaji, R.2
-
19
-
-
0037777195
-
Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations
-
M. Tang. Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations. Commun. PDEs 26 (2001), 909-938.
-
(2001)
Commun. PDEs
, vol.26
, pp. 909-938
-
-
Tang, M.1
|