메뉴 건너뛰기




Volumn 133, Issue 3, 2003, Pages 705-717

Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities

Author keywords

[No Author keywords available]

Indexed keywords


EID: 1442307581     PISSN: 03082105     EISSN: None     Source Type: Journal    
DOI: 10.1017/s0308210500002614     Document Type: Article
Times cited : (72)

References (20)
  • 1
    • 0000343907 scopus 로고    scopus 로고
    • On the number of positive solutions of some semilinear Dirichlet problems in a ball
    • Adimurthi, F. Pacella and S. L. Yadava. On the number of positive solutions of some semilinear Dirichlet problems in a ball. Diff. Integ. Eqns 10 (1997), 1157-1170.
    • (1997) Diff. Integ. Eqns , vol.10 , pp. 1157-1170
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 2
    • 0000049245 scopus 로고
    • Combined effects of concave and convex nonlinearities in some elliptic problems
    • A. Ambrosetti, H. Brezis and G. Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Analysis 122 (1994), 519-543.
    • (1994) J. Funct. Analysis , vol.122 , pp. 519-543
    • Ambrosetti, A.1    Brezis, H.2    Cerami, G.3
  • 3
    • 38249038697 scopus 로고
    • Emden-Fowler equations involving critical exponents
    • F. V. Atkinson and L. A. Peletier. Emden-Fowler equations involving critical exponents. J. Nonlin. Analysis 10 (1988), 755-771.
    • (1988) J. Nonlin. Analysis , vol.10 , pp. 755-771
    • Atkinson, F.V.1    Peletier, L.A.2
  • 4
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983), 437-477.
    • (1983) Commun. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 5
    • 0005437692 scopus 로고    scopus 로고
    • Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
    • L. Damascelli, M. Grossi and F. Pacella. Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Annls Inst. H. Poincaré Analyse Non Linéaire 16 (1999), 631-652.
    • (1999) Annls Inst. H. Poincaré Analyse Non Linéaire , vol.16 , pp. 631-652
    • Damascelli, L.1    Grossi, M.2    Pacella, F.3
  • 6
    • 0001410150 scopus 로고    scopus 로고
    • Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball
    • L. Erbe and M. Tang. Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball. J. Diff. Eqns 138 (1997), 351-379.
    • (1997) J. Diff. Eqns , vol.138 , pp. 351-379
    • Erbe, L.1    Tang, M.2
  • 7
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • B. Gidas, W. M. Ni and L. Nirenberg. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979), 209-243.
    • (1979) Commun. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 8
    • 0036789599 scopus 로고    scopus 로고
    • On uniqueness of positive solutions for a class of semilinear equations
    • P. Korman. On uniqueness of positive solutions for a class of semilinear equations. Discrete Contin. Dynam. Syst. 8 (2002), 865-871.
    • (2002) Discrete Contin. Dynam. Syst. , vol.8 , pp. 865-871
    • Korman, P.1
  • 9
    • 21344474527 scopus 로고    scopus 로고
    • Exact multiplicity results for boundary value problems with nonlinearities generalizing cubic
    • P. Korman, Yi Li and T. Ouyang. Exact multiplicity results for boundary value problems with nonlinearities generalizing cubic. Proc. R. Soc. Edinb. A126 (1996), 599-616.
    • (1996) Proc. R. Soc. Edinb. A , vol.126 , pp. 599-616
    • Korman, P.1    Li, Y.2    Ouyang, T.3
  • 10
    • 0000411957 scopus 로고    scopus 로고
    • An exact multiplicity result for a class of semilinear equations
    • P. Korman, Yi Li and T. Ouyang. An exact multiplicity result for a class of semilinear equations. Commun. PDEs 22 (1997), 661-684.
    • (1997) Commun. PDEs , vol.22 , pp. 661-684
    • Korman, P.1    Li, Y.2    Ouyang, T.3
  • 11
    • 84966214197 scopus 로고
    • A counterexample to the nodal domain conjecture and a related semilinear elliptic equation
    • C.-S. Lin and W.-M. Ni. A counterexample to the nodal domain conjecture and a related semilinear elliptic equation. Proc. Am. Math. Soc. 102 (1988), 271-277.
    • (1988) Proc. Am. Math. Soc. , vol.102 , pp. 271-277
    • Lin, C.-S.1    Ni, W.-M.2
  • 12
    • 0002415248 scopus 로고
    • Nonexistence theorems for quasilinear partial differential equations
    • W.-M. Ni and J. Serrin. Nonexistence theorems for quasilinear partial differential equations. Rendi. Circ. Mat. Palermo 8 (1985), 171-185.
    • (1985) Rendi. Circ. Mat. Palermo , vol.8 , pp. 171-185
    • Ni, W.-M.1    Serrin, J.2
  • 13
    • 0001602653 scopus 로고    scopus 로고
    • Exact multiplicity of positive solutions for a class of semilinear problems
    • T. Ouyang and J. Shi. Exact multiplicity of positive solutions for a class of semilinear problems. J. Diff. Eqns 146 (1998), 121-156.
    • (1998) J. Diff. Eqns , vol.146 , pp. 121-156
    • Ouyang, T.1    Shi, J.2
  • 14
    • 0002608722 scopus 로고    scopus 로고
    • Exact multiplicity of positive solutions for a class of semilinear problem. II
    • T. Ouyang and J. Shi. Exact multiplicity of positive solutions for a class of semilinear problem. II. J. Diff. Eqns 158 (1999), 94-151.
    • (1999) J. Diff. Eqns , vol.158 , pp. 94-151
    • Ouyang, T.1    Shi, J.2
  • 15
    • 0001648137 scopus 로고
    • A general variational identity
    • P. Pucci and J. Serrin. A general variational identity. Indiana Univ. Math. J. 35 (1986), 681-703.
    • (1986) Indiana Univ. Math. J. , vol.35 , pp. 681-703
    • Pucci, P.1    Serrin, J.2
  • 16
    • 0000820023 scopus 로고    scopus 로고
    • Uniqueness of ground states for quasilinear elliptic equations
    • J. Serrin and M. Tang. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49 (2000), 897-923.
    • (2000) Indiana Univ. Math. J. , vol.49 , pp. 897-923
    • Serrin, J.1    Tang, M.2
  • 17
    • 0040536711 scopus 로고
    • Classification of positive solutions of quasilinear elliptic equations
    • J. Serrin and H. Zou. Classification of positive solutions of quasilinear elliptic equations. Topolog. Meth. Nonlin. Analysis 3 (1994), 1-26.
    • (1994) Topolog. Meth. Nonlin. Analysis , vol.3 , pp. 1-26
    • Serrin, J.1    Zou, H.2
  • 18
    • 0035613628 scopus 로고    scopus 로고
    • Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity
    • J. Shi and R. Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete Contin. Dynam. Syst. 7 (2001), 559-571.
    • (2001) Discrete Contin. Dynam. Syst. , vol.7 , pp. 559-571
    • Shi, J.1    Shivaji, R.2
  • 19
    • 0037777195 scopus 로고    scopus 로고
    • Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations
    • M. Tang. Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations. Commun. PDEs 26 (2001), 909-938.
    • (2001) Commun. PDEs , vol.26 , pp. 909-938
    • Tang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.