-
5
-
-
14344279162
-
-
note
-
α, where n is the window scale and the scaling exponent a is smaller than 0.5. In contrast, for uncorrelated behavior α = 0.5, while for correlated behavior α > 0.5. In the present study we integrate the series before applying the scaling analysis and thus α = 1.5 indicates uncorrelated behavior while α > 1.5 (α < 1.5) indicates correlated (anticorrelated) behavior.
-
-
-
-
6
-
-
34547856203
-
-
C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994); C.-K. Peng, S. V. Havlin, H. E. Stanley, and A. L. Goldberger, Chaos 5, 82 (1995); C.-K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Goldberger, J. Electrocardiol. 28, 59 (1995); Y. Ashkenazy, M. Lewkowicz, J. Levitan, S. Havlin, K. Saermark, H. Moelgaard, P. E. Bloch Thomsen, M. Moller, U. Hintze, and H. V. Huikuri, Europhys. Lett. (to be published).
-
(1994)
Phys. Rev. E
, vol.49
, pp. 1685
-
-
Peng, C.-K.1
Buldyrev, S.V.2
Havlin, S.3
Simons, M.4
Stanley, H.E.5
Goldberger, A.L.6
-
7
-
-
0029434863
-
-
C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994); C.-K. Peng, S. V. Havlin, H. E. Stanley, and A. L. Goldberger, Chaos 5, 82 (1995); C.-K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Goldberger, J. Electrocardiol. 28, 59 (1995); Y. Ashkenazy, M. Lewkowicz, J. Levitan, S. Havlin, K. Saermark, H. Moelgaard, P. E. Bloch Thomsen, M. Moller, U. Hintze, and H. V. Huikuri, Europhys. Lett. (to be published).
-
(1995)
Chaos
, vol.5
, pp. 82
-
-
Peng, C.-K.1
Havlin, S.V.2
Stanley, H.E.3
Goldberger, A.L.4
-
8
-
-
0029589965
-
-
C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994); C.-K. Peng, S. V. Havlin, H. E. Stanley, and A. L. Goldberger, Chaos 5, 82 (1995); C.-K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Goldberger, J. Electrocardiol. 28, 59 (1995); Y. Ashkenazy, M. Lewkowicz, J. Levitan, S. Havlin, K. Saermark, H. Moelgaard, P. E. Bloch Thomsen, M. Moller, U. Hintze, and H. V. Huikuri, Europhys. Lett. (to be published).
-
(1995)
J. Electrocardiol.
, vol.28
, pp. 59
-
-
Peng, C.-K.1
Havlin, S.2
Hausdorff, J.M.3
Mietus, J.E.4
Stanley, H.E.5
Goldberger, A.L.6
-
9
-
-
34547856203
-
-
to be published
-
C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994); C.-K. Peng, S. V. Havlin, H. E. Stanley, and A. L. Goldberger, Chaos 5, 82 (1995); C.-K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Goldberger, J. Electrocardiol. 28, 59 (1995); Y. Ashkenazy, M. Lewkowicz, J. Levitan, S. Havlin, K. Saermark, H. Moelgaard, P. E. Bloch Thomsen, M. Moller, U. Hintze, and H. V. Huikuri, Europhys. Lett. (to be published).
-
Europhys. Lett.
-
-
Ashkenazy, Y.1
Lewkowicz, M.2
Levitan, J.3
Havlin, S.4
Saermark, K.5
Moelgaard, H.6
Bloch Thomsen, P.E.7
Moller, M.8
Hintze, U.9
Huikuri, H.V.10
-
10
-
-
14344279567
-
-
note
-
The first order detrended fluctuation analysis (DFA) eliminates constant trends from the original series (or, equivalently, linear trends from the integrated series) [6]; the second order DFA removes linear trends, and the nth order DFA eliminates polynomial trends of order n - 1.
-
-
-
-
11
-
-
33847590866
-
-
note
-
MIT-BIH Normal Sinus Rhythm Database and BIDMC Congestive Heart Failure Database available at http://www.physionet.org/physiobank/database/#ecg
-
-
-
-
12
-
-
14344270852
-
-
note
-
i; (ii) we decompose the increment series into a magnitude series (|ΔRR|) and a sign series [sgn(ΔRR)]; (iii) to avoid artificial trends we subtract from the magnitude and sign series their average; (iv) because of limitations in the accuracy of the detrended fluctuation analysis method for estimating the scaling exponents of anticorrelated signals (α < 0.5), we integrate the magnitude and sign series; (v) we perform a scaling analysis using second order detrended fluctuation analysis on the integrated magnitude and sign series; (vi) to obtain the scaling exponents for the magnitude and sign series we measure the slope of F(n)/n on a log-log plot, where F(n) is the root mean square fluctuation function and n is the scale of analysis (in beat numbers).
-
-
-
-
13
-
-
0043096180
-
-
Heartbeat increment series were investigated by A. Babloyantz and P. Maurer, Phys. Lett. A 221, 43 (1996) and P. Maurer, H.-D. Wang, and A. Babloyantz, Phys. Rev. E 56, 1188 (1997). These studies differ from ours because we investigate, quantitatively, normal heartbeats by evaluating the scaling properties of the magnitude and sign series. In addition, our calculations are based on window scales larger than 6 and up to 1000 heartbeats.
-
(1996)
Phys. Lett. A
, vol.221
, pp. 43
-
-
Babloyantz, A.1
Maurer, P.2
-
14
-
-
0000882725
-
-
Heartbeat increment series were investigated by A. Babloyantz and P. Maurer, Phys. Lett. A 221, 43 (1996) and P. Maurer, H.-D. Wang, and A. Babloyantz, Phys. Rev. E 56, 1188 (1997). These studies differ from ours because we investigate, quantitatively, normal heartbeats by evaluating the scaling properties of the magnitude and sign series. In addition, our calculations are based on window scales larger than 6 and up to 1000 heartbeats.
-
(1997)
Phys. Rev. E
, vol.56
, pp. 1188
-
-
Maurer, P.1
Wang, H.-D.2
Babloyantz, A.3
-
15
-
-
0003576783
-
-
New York, New York
-
P. F. Panter, Modulation, Noise, and Spectral Analysis Applied to Information Transmission (New York, New York, 1965). We also applied a test for nonlinearity using the phase randomization procedure described in J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and D. J. Garmer, Physica (Amsterdam) 58D, 77 (1992), and find that the magnitude scaling exponent drops to 0.5 while the sign scaling exponent remains unchanged.
-
(1965)
Modulation, Noise, and Spectral Analysis Applied to Information Transmission
-
-
Panter, P.F.1
-
16
-
-
44049111332
-
-
Amsterdam
-
P. F. Panter, Modulation, Noise, and Spectral Analysis Applied to Information Transmission (New York, New York, 1965). We also applied a test for nonlinearity using the phase randomization procedure described in J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and D. J. Garmer, Physica (Amsterdam) 58D, 77 (1992), and find that the magnitude scaling exponent drops to 0.5 while the sign scaling exponent remains unchanged.
-
(1992)
Physica
, vol.58 D
, pp. 77
-
-
Theiler, J.1
Eubank, S.2
Longtin, A.3
Galdrikian, B.4
Garmer, D.J.5
-
17
-
-
0003031097
-
-
J. Kurths, A. Voss, P. Saparin, A. Witt, H. J. Kleiner, and N. Wessel, Chaos 5, 88 (1995); A. Voss, N. Wessel, H. J. Kleiner, J. Kurths, and R. Dietz, Nonlinear Anal. Theory Methods Appl. 30, 935 (1997).
-
(1995)
Chaos
, vol.5
, pp. 88
-
-
Kurths, J.1
Voss, A.2
Saparin, P.3
Witt, A.4
Kleiner, H.J.5
Wessel, N.6
-
18
-
-
0008718484
-
-
J. Kurths, A. Voss, P. Saparin, A. Witt, H. J. Kleiner, and N. Wessel, Chaos 5, 88 (1995); A. Voss, N. Wessel, H. J. Kleiner, J. Kurths, and R. Dietz, Nonlinear Anal. Theory Methods Appl. 30, 935 (1997).
-
(1997)
Nonlinear Anal. Theory Methods Appl.
, vol.30
, pp. 935
-
-
Voss, A.1
Wessel, N.2
Kleiner, H.J.3
Kurths, J.4
Dietz, R.5
-
19
-
-
0029917247
-
-
G. Sugihara, W. Allan, D. Sobel, and K. D. Allan, Proc. Natl. Acad. Sci. U.S.A. 93, 2608 (1996); P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, Nature (London) 399, 461 (1999).
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 2608
-
-
Sugihara, G.1
Allan, W.2
Sobel, D.3
Allan, K.D.4
-
20
-
-
0344327144
-
-
G. Sugihara, W. Allan, D. Sobel, and K. D. Allan, Proc. Natl. Acad. Sci. U.S.A. 93, 2608 (1996); P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, Nature (London) 399, 461 (1999).
-
(1999)
Nature (London)
, vol.399
, pp. 461
-
-
Ivanov P., Ch.1
Amaral, L.A.N.2
Goldberger, A.L.3
Havlin, S.4
Rosenblum, M.G.5
Struzik, Z.R.6
Stanley, H.E.7
|