-
1
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn Theory of reproducing kernels Trans. Amer. Math. Soc. 68 1950 337-404
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
2
-
-
3242738676
-
On the convergence rate of the component-by-component construction of good lattice rules
-
J. Dick On the convergence rate of the component-by-component construction of good lattice rules J. Complexity 20 2004 493-522
-
(2004)
J. Complexity
, vol.20
, pp. 493-522
-
-
Dick, J.1
-
5
-
-
14044253462
-
2
-
submitted
-
K. Hesse, I.H. Sloan, Worst-case errors in a Sobolev space setting for cubature over the sphere S 2 , submitted.
-
-
-
Hesse, K.1
Sloan, I.H.2
-
6
-
-
0041638501
-
Integration and approximation in arbitrary dimensions
-
F.J. Hickernell H. Woźniakowski Integration and approximation in arbitrary dimensions Adv. Comput. Math. 12 2002 25-58
-
(2002)
Adv. Comput. Math.
, vol.12
, pp. 25-58
-
-
Hickernell, F.J.1
Woźniakowski, H.2
-
7
-
-
0035702360
-
Tractability of multivariate integration for periodic functions
-
F.J. Hickernell H. Woźniakowski Tractability of multivariate integration for periodic functions J. Complexity 17 2001 660-682
-
(2001)
J. Complexity
, vol.17
, pp. 660-682
-
-
Hickernell, F.J.1
Woźniakowski, H.2
-
8
-
-
0037610445
-
Gleichverteilung auf Produkten von Sphären
-
E. Hlawka Gleichverteilung auf Produkten von Sphären J. Reine Angew. Math. 330 1982 1-43
-
(1982)
J. Reine Angew. Math.
, vol.330
, pp. 1-43
-
-
Hlawka, E.1
-
9
-
-
0038392447
-
Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces
-
F.Y. Kuo Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces J. Complexity 19 2003 301-320
-
(2003)
J. Complexity
, vol.19
, pp. 301-320
-
-
Kuo, F.Y.1
-
10
-
-
0036889417
-
Component-by-component construction of good lattice rules with a composite number of points
-
F.Y. Kuo S. Joe Component-by-component construction of good lattice rules with a composite number of points J. Complexity 18 2002 943-976
-
(2002)
J. Complexity
, vol.18
, pp. 943-976
-
-
Kuo, F.Y.1
Joe, S.2
-
12
-
-
0001542106
-
A quadrature formula for the sphere of 131st algebraic order of accuracy
-
V.I. Lebedev D.N. Laikov A quadrature formula for the sphere of 131st algebraic order of accuracy Dokl. Math. 59 1999 471-481
-
(1999)
Dokl. Math.
, vol.59
, pp. 471-481
-
-
Lebedev, V.I.1
Laikov, D.N.2
-
13
-
-
0003360039
-
Spherical Harmonics
-
Springer, Berlin
-
C. Müller, Spherical Harmonics, in: Lecture Notes in Mathematics, vol. 17, Springer, Berlin, 1966.
-
(1966)
Lecture Notes in Mathematics
, vol.17
-
-
Müller, C.1
-
15
-
-
0003851212
-
-
BI Wissenschafts-verlag, Mannheim, Wien, Zürich
-
M. Reimer, Constructive Theory of Multivariate Functions, BI Wissenschafts-verlag, Mannheim, Wien, Zürich, 1990.
-
(1990)
Constructive Theory of Multivariate Functions
-
-
Reimer, M.1
-
16
-
-
0036790313
-
On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces
-
I.H. Sloan F.Y. Kuo S. Joe On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces Math. Comp. 71 2002 1609-1640
-
(2002)
Math. Comp.
, vol.71
, pp. 1609-1640
-
-
Sloan, I.H.1
Kuo, F.Y.2
Joe, S.3
-
17
-
-
0038624700
-
Constructing randomly shifted lattice rules in weighted Sobolev spaces
-
I.H. Sloan F.Y. Kuo S. Joe Constructing randomly shifted lattice rules in weighted Sobolev spaces SIAM J. Numer. Anal. 40 2002 1650-1665
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 1650-1665
-
-
Sloan, I.H.1
Kuo, F.Y.2
Joe, S.3
-
18
-
-
0036003407
-
Component-by-component construction of good lattice rules
-
I.H. Sloan A.V. Reztsov Component-by-component construction of good lattice rules Math. Comp. 71 2002 263-273
-
(2002)
Math. Comp.
, vol.71
, pp. 263-273
-
-
Sloan, I.H.1
Reztsov, A.V.2
-
19
-
-
4043098361
-
Extremal systems of points and numerical integration on the sphere
-
I.H. Sloan R.S. Womersley Extremal systems of points and numerical integration on the sphere Adv. Comput. Math. 21 2004 107-125
-
(2004)
Adv. Comput. Math.
, vol.21
, pp. 107-125
-
-
Sloan, I.H.1
Womersley, R.S.2
-
20
-
-
0002522806
-
When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?
-
I.H. Sloan H. Woźniakowski When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14 1998 1-33
-
(1998)
J. Complexity
, vol.14
, pp. 1-33
-
-
Sloan, I.H.1
Woźniakowski, H.2
-
21
-
-
0035700415
-
Tractability of multivariate integration for weighted Korobov classes
-
I.H. Sloan H. Woźniakowski Tractability of multivariate integration for weighted Korobov classes J. Complexity 17 2001 697-721
-
(2001)
J. Complexity
, vol.17
, pp. 697-721
-
-
Sloan, I.H.1
Woźniakowski, H.2
-
22
-
-
0036296452
-
Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces
-
I.H. Sloan H. Woźniakowski Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces J. Complexity 18 2002 479-499
-
(2002)
J. Complexity
, vol.18
, pp. 479-499
-
-
Sloan, I.H.1
Woźniakowski, H.2
-
24
-
-
38149143192
-
Tractability and strong tractability of linear multivariate problems
-
H. Woźniakowski Tractability and strong tractability of linear multivariate problems J. Complexity 10 1994 96-128
-
(1994)
J. Complexity
, vol.10
, pp. 96-128
-
-
Woźniakowski, H.1
-
25
-
-
0007012456
-
Tractability and strong tractability of multivariate tensor product problems
-
München, 1993 J. Comput. Inform
-
H. Woźniakowski, Tractability and strong tractability of multivariate tensor product problems, in: Proceedings of Second Gauss Symposium, München, 1993, J. Comput. Inform. 4 (1994) 1-19.
-
(1994)
Proceedings of Second Gauss Symposium
, vol.4
, pp. 1-19
-
-
Woźniakowski, H.1
|