-
1
-
-
84995007716
-
A geometrical picture of anisotropic elastic tensors
-
G. Backus, A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8(3) (1970) 633-671.
-
(1970)
Rev. Geophys. Space Phys.
, vol.8
, Issue.3
, pp. 633-671
-
-
Backus, G.1
-
2
-
-
13944273185
-
Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry
-
PhD Thesis
-
R. Baerheim, Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. PhD Thesis. Geologica Ultraiectina 159 (1998).
-
(1998)
Geologica Ultraiectina
, vol.159
-
-
Baerheim, R.1
-
5
-
-
0035499645
-
A new proof that the number of linear elastic symmetries is eight
-
P. Chadwick, M. Vianello and S.C. Cowin, A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49 (2001) 2471-2492.
-
(2001)
J. Mech. Phys. Solids
, vol.49
, pp. 2471-2492
-
-
Chadwick, P.1
Vianello, M.2
Cowin, S.C.3
-
6
-
-
0001473923
-
On the identification of material symmetry for anisotropic elastic materials
-
S.C. Cowin and M.M. Mehrabadi, On the identification of material symmetry for anisotropic elastic materials. Quart. J. Mech. Appl. Math. 40 (1987) 451-476.
-
(1987)
Quart. J. Mech. Appl. Math.
, vol.40
, pp. 451-476
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
7
-
-
44049110894
-
The structure of the linear anisotropic elastic symmetries
-
S.C. Cowin and M.M. Mehrabadi, The structure of the linear anisotropic elastic symmetries. Mech. Phys. Solids 40(7) (1992) 1459-1471.
-
(1992)
Mech. Phys. Solids
, vol.40
, Issue.7
, pp. 1459-1471
-
-
Cowin, S.C.1
Mehrabadi, M.M.2
-
9
-
-
0030141773
-
Symmetry classes for elasticity tensors
-
S. Forte and M. Vianello, Symmetry classes for elasticity tensors. J. Elasticity 43(2) (1996) 81-108.
-
(1996)
J. Elasticity
, vol.43
, Issue.2
, pp. 81-108
-
-
Forte, S.1
Vianello, M.2
-
10
-
-
0031275065
-
Symmetry classes and harmonic decomposition for photoelasticity tensors
-
S. Forte and M. Vianello, Symmetry classes and harmonic decomposition for photoelasticity tensors. Internat. J. Engrg. Sci. 35(14) (1997) 1317-1326.
-
(1997)
Internat. J. Engrg. Sci.
, vol.35
, Issue.14
, pp. 1317-1326
-
-
Forte, S.1
Vianello, M.2
-
11
-
-
1842569049
-
Some theorems of the theory of anisotropic media
-
B. Herman, Some theorems of the theory of anisotropic media. Comptes Rendus (Doklady) Acad. Sci. URSS 48(2) (1945) 89-92.
-
(1945)
Comptes Rendus (Doklady) Acad. Sci. URSS
, vol.48
, Issue.2
, pp. 89-92
-
-
Herman, B.1
-
12
-
-
34249918305
-
On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor
-
Y.Z Huo and G. del Piero, On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elasticity 25 (1991) 203-246.
-
(1991)
J. Elasticity
, vol.25
, pp. 203-246
-
-
Huo, Y.Z.1
Del Piero, G.2
-
14
-
-
0242274305
-
Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight
-
T.C.T. Ting, Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Internat. J. Solids Struct. 40 (2003) 7129-7142.
-
(2003)
Internat. J. Solids Struct.
, vol.40
, pp. 7129-7142
-
-
Ting, T.C.T.1
-
15
-
-
0031370212
-
On symmetries and anisotropies of classical and micropolar linear elasticities: A new method based upon a complex vector basis and some systematic results
-
H. Xiao, On symmetries and anisotropies of classical and micropolar linear elasticities: A new method based upon a complex vector basis and some systematic results. J. Elasticity 49 (1998) 129-162.
-
(1998)
J. Elasticity
, vol.49
, pp. 129-162
-
-
Xiao, H.1
-
16
-
-
1542357345
-
Maxwell's multipole representation of traceless symmetric tensors and its application to function of high-order tensors
-
W.N. Zou and Q.S. Zheng, Maxwell's multipole representation of traceless symmetric tensors and its application to function of high-order tensors. Proc. Roy. Soc. London 459 (2003) 527-538.
-
(2003)
Proc. Roy. Soc. London
, vol.459
, pp. 527-538
-
-
Zou, W.N.1
Zheng, Q.S.2
|