-
3
-
-
0346457225
-
-
A. Bekker et al., Nature 427, 117 (2004).
-
(2004)
Nature
, vol.427
, pp. 117
-
-
Bekker, A.1
-
4
-
-
13844313003
-
-
note
-
The disappearance of BIFs after about 1.8 Ga had been initially thought to indicate the transition to the oxygenated ocean (1), but a growing body of evidence suggests that sultide, rather than oxygen, could have been responsible for removing Fe from deep ocean waters (13, 34-36).
-
-
-
-
5
-
-
13844311424
-
-
note
-
56Fe values are estimated at 0.10‰ (2σ level). Analytical procedures, sample descriptions, and Fe isotope composition of various georeference materials, black shales, and BIF are available as supporting materials on Science Online.
-
-
-
-
6
-
-
30644462481
-
-
C. M. Johnson, B. L. Beard, E. E. Roden, D. K. Newman, K. H. Nealson, Rev. Mineral. Geochem. 55, 359 (2004).
-
(2004)
Rev. Mineral. Geochem.
, vol.55
, pp. 359
-
-
Johnson, C.M.1
Beard, B.L.2
Roden, E.E.3
Newman, D.K.4
Nealson, K.H.5
-
8
-
-
0043204510
-
-
B. L. Beard, C. M. Johnson, K. I. VonDamm, R. L. Poulson, Geology 31, 629 (2003).
-
(2003)
Geology
, vol.31
, pp. 629
-
-
Beard, B.L.1
Johnson, C.M.2
VonDamm, K.I.3
Poulson, R.L.4
-
9
-
-
13844314450
-
-
note
-
The range of Fe isotope composition of hydrogenic ferromanganese deposits in modern oceanic basins is large [between -0.8 and -0.1‰ (37)], but it is unclear whether the variability is caused by changes of Fe isotope composition in the water column or by secondary effects.
-
-
-
-
11
-
-
0346317406
-
-
O. Rouxel, N. Dobbek, J. Ludden, Y. Fouquet, Chem. Geol. 202, 155 (2003).
-
(2003)
Chem. Geol.
, vol.202
, pp. 155
-
-
Rouxel, O.1
Dobbek, N.2
Ludden, J.3
Fouquet, Y.4
-
12
-
-
0037330662
-
-
C. M. Johnson, B. L. Beard, N. J. Beukes, C. Klein, J. M. O'Leary, Contrib. Mineral. Petrol. 144, 523 (2003).
-
(2003)
Contrib. Mineral. Petrol.
, vol.144
, pp. 523
-
-
Johnson, C.M.1
Beard, B.L.2
Beukes, N.J.3
Klein, C.4
O'Leary, J.M.5
-
15
-
-
0035031762
-
-
J. W. M. Wijsman, J. J. Middelburg, P. M. J. Herman, M. E. Bottcher, C. H. R. Heip, Mar. Chem. 74, 261 (2001).
-
(2001)
Mar. Chem.
, vol.74
, pp. 261
-
-
Wijsman, J.W.M.1
Middelburg, J.J.2
Herman, P.M.J.3
Bottcher, M.E.4
Heip, C.H.R.5
-
17
-
-
13844306894
-
-
note
-
Experimental studies suggest that Fe isotope fractionations during bacterial reduction of Fe oxides is dependent on reduction rates (6). At high reduction rates, rapid formation and sorption of Fe(II) to ferric oxide substrate produced fractionations as large as -2.3‰, but this value corresponds to an extreme case and fractionation of -1.3‰ between biogenic Fe(II) and ferric oxide is more representative (6).
-
-
-
-
18
-
-
13844311426
-
-
abstract OS31L-09
-
S. Severmann, J. McManus, C. M. Johnson, B. L. Beard, Eos 84, Ocean Sci. Meet. Suppl., abstract OS31L-09 (2003).
-
(2003)
Eos 84, Ocean Sci. Meet. Suppl.
-
-
Severmann, S.1
McManus, J.2
Johnson, C.M.3
Beard, B.L.4
-
20
-
-
13844322294
-
-
note
-
8) produces a kinetic isotope fractionation of 0.3‰ (38), suggesting that the fractionation of pyrite is poorly constrained from -0.3 to 1.0‰ relative to dissolved Fe(II).
-
-
-
-
21
-
-
13844313004
-
-
note
-
56Fe value for each sample. For comparison and to evaluate heterogeneity, we also analyzed several individual sulfide nodules from the same samples (table S2).
-
-
-
-
23
-
-
0032480241
-
-
M. Vargas, K. Kashefi, E. L. Blunt-Harris, D. R. Lovley, Nature 395, 65 (1998).
-
(1998)
Nature
, vol.395
, pp. 65
-
-
Vargas, M.1
Kashefi, K.2
Blunt-Harris, E.L.3
Lovley, D.R.4
-
24
-
-
1842532883
-
-
G. A. Icopini, A. D. Anbar, S. S. Ruebush, M. Tien, S. L. Brantley, Geology 32, 205 (2004).
-
(2004)
Geology
, vol.32
, pp. 205
-
-
Icopini, G.A.1
Anbar, A.D.2
Ruebush, S.S.3
Tien, M.4
Brantley, S.L.5
-
25
-
-
84874983608
-
-
T. D. Bullen, A. F. White, C. W. Childs, D. V. Vivit, M. S. Schulz, Geology 29, 699 (2001).
-
(2001)
Geology
, vol.29
, pp. 699
-
-
Bullen, T.D.1
White, A.F.2
Childs, C.W.3
Vivit, D.V.4
Schulz, M.S.5
-
26
-
-
13844320914
-
-
note
-
2. Alternatively, a direct mechanism for Fe oxidation by anoxygenic phototrophic bacteria has been suggested (40), and abiotic photochemical oxidation may have also contributed to Fe oxidation in the Archean (41).
-
-
-
-
27
-
-
13844308305
-
-
note
-
A magnetite-Fe(II) fractionation factor of about 2.4‰ has been inferred from BIFs data (12), which is slightly less than the equilibrium Fe(III)-Fe(II) fractionation factor of 2.9‰ at 22°C (42). The fractionation between ferrihydrite and Fe(II) of 1.5‰ measured during anaerobic photosynthetic Fe(II) oxidation by bacteria (43) is slightly larger than the 0.9‰ fractionation measured during abiotic oxidation of Fe(II) to ferrihydrite (25).
-
-
-
-
28
-
-
0025574063
-
-
N. J. Beukes, C. Klein, A. J. Kaufman, J. M. Hayes, Precambrian Res. 85, 663 (1990).
-
(1990)
Precambrian Res.
, vol.85
, pp. 663
-
-
Beukes, N.J.1
Klein, C.2
Kaufman, A.J.3
Hayes, J.M.4
-
29
-
-
13844320096
-
-
note
-
BIF is the fractionation factor during Fe oxidation and Fe oxide precipitation, ranging between 1.0015 and 1.0023 (6).
-
-
-
-
35
-
-
1842529302
-
-
G. L. Arnold, A. D. Anbar, J. Barling, T. W. Lyons, Science 304, 87 (2004).
-
(2004)
Science
, vol.304
, pp. 87
-
-
Arnold, G.L.1
Anbar, A.D.2
Barling, J.3
Lyons, T.W.4
-
37
-
-
3242736808
-
-
S. Levasseur, M. Frank, J. R. Hein, A. N. Halliday, Earth Planet. Sci. Lett. 224, 91 (2004).
-
(2004)
Earth Planet. Sci. Lett.
, vol.224
, pp. 91
-
-
Levasseur, S.1
Frank, M.2
Hein, J.R.3
Halliday, A.N.4
-
38
-
-
3042612243
-
-
I. B. Butler, C. Archer, D. Rickard, D. Vance, A. Oldroyd, Geochim. Cosmochim. Acta 67, A51 (2003).
-
(2003)
Geochim. Cosmochim. Acta
, vol.67
-
-
Butler, I.B.1
Archer, C.2
Rickard, D.3
Vance, D.4
Oldroyd, A.5
-
39
-
-
0033527055
-
-
R. E. Summons, L. L. Jahnke, J. M. Hope, G. A. Logan, Nature 400, 554 (1999).
-
(1999)
Nature
, vol.400
, pp. 554
-
-
Summons, R.E.1
Jahnke, L.L.2
Hope, J.M.3
Logan, G.A.4
-
40
-
-
0027246589
-
-
F. Widdel et al., Nature 362, 834 (1993).
-
(1993)
Nature
, vol.362
, pp. 834
-
-
Widdel, F.1
-
42
-
-
0942278231
-
-
S. A. Welch, B. L. Beard, C. M. Johnson, P. S. Braterman, Geochim. Cosmochim. Acta 67, 4231 (2003).
-
(2003)
Geochim. Cosmochim. Acta
, vol.67
, pp. 4231
-
-
Welch, S.A.1
Beard, B.L.2
Johnson, C.M.3
Braterman, P.S.4
-
43
-
-
1642528965
-
-
L. R. Croal, C. M. Johnson, B. L. Beard, D. K. Newman, Geochim. Cosmochim. Acta 68, 1227 (2004).
-
(2004)
Geochim. Cosmochim. Acta
, vol.68
, pp. 1227
-
-
Croal, L.R.1
Johnson, C.M.2
Beard, B.L.3
Newman, D.K.4
-
44
-
-
13844306885
-
-
note
-
We gratefully acknowledge B. Krapež, M. Barley, D. Winston, B. Rasmussen, F. Gauthier-Lafaye, P. Medvedev, N. Beukes, L.-L. Coetzee, E. N. Berdusco, R. Ruhanen, M. Köhler, M. Jirsa, M. J. Severson, J. Brouwer, R. Shapiro, G. L. LaBerge, B. Peucker-Ehrenbrink, S. Petsch, and H. Baioumy for advice and access to sample collections and L. Ball and J. Blusztajn for technical assistance. O.J.R. is grateful to M. Bickle and A. Galy from the University of Cambridge for the access to Belingwe Iron Formation samples and analytical support of the Nu Plasma. A.B.'s fieldwork in South Africa and Western Australia was supported by NASA and Petroleum Research Fund grants to H. D. Holland and by Australian Research Council and Minerals Energy Research Institute of Western Australia grants to M. Barley and B. Krapež. We thank J. M. Hayes, H. D. Holland, and two anonymous reviewers for constructive comments. The Fe isotope work was supported by NASA Astrobiology Institute Award NNA04CC04A From Early Biospheric Metabolisms to the Evolution of Complex Systems (K.J.E.). Support for O.J.R. was provided by a postdoctoral fellowship from the Deep Ocean Exploration Institute at Woods Hole Oceonagraphic Institue (WHOI). This is WHOI contribution number 11275.
-
-
-
|