-
1
-
-
0030084384
-
Smoothing data with local instabilities for the identification of chaotic systems
-
Aguirre, L. A., Mendes, E. M. & Billings, S. A. [1996] "Smoothing data with local instabilities for the identification of chaotic systems," Int. J. Contr. 63, 483-505.
-
(1996)
Int. J. Contr.
, vol.63
, pp. 483-505
-
-
Aguirre, L.A.1
Mendes, E.M.2
Billings, S.A.3
-
2
-
-
0032682311
-
Noise reduction in chaotic time series data
-
Bhowal, A. & Roy, T. K. [1999] "Noise reduction in chaotic time series data," PRAMANA-J. Phys. 52, 25-37.
-
(1999)
PRAMANA-J. Phys.
, vol.52
, pp. 25-37
-
-
Bhowal, A.1
Roy, T.K.2
-
3
-
-
0024067409
-
Identification of nonlinear output affine systems using an orthogonal least squares algorithm
-
Billings, S. A., Korenberg, M. J. & Chen, S. [1988] "Identification of nonlinear output affine systems using an orthogonal least squares algorithm," Int. J. Syst. Sci. 19, 1559-1568.
-
(1988)
Int. J. Syst. Sci.
, vol.19
, pp. 1559-1568
-
-
Billings, S.A.1
Korenberg, M.J.2
Chen, S.3
-
4
-
-
0001658853
-
Nonlinear model validation using the correlation tests
-
Billings, S. A. & Zhu, Q. M. [1994] "Nonlinear model validation using the correlation tests," Int. J. Contr. 60, 1107-1120.
-
(1994)
Int. J. Contr.
, vol.60
, pp. 1107-1120
-
-
Billings, S.A.1
Zhu, Q.M.2
-
5
-
-
0024771664
-
Orthogonal least squares methods and their application to nonlinear system identification
-
Chen, S., Billings, S. A. & Luo, W. [1989] "Orthogonal least squares methods and their application to nonlinear system identification," Int. J. Contr. 50, 1873-1896.
-
(1989)
Int. J. Contr.
, vol.50
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.A.2
Luo, W.3
-
7
-
-
0035895114
-
Nonlinear system identification using wavelet multiresolution models
-
Coca, D. & Billings, S. A. [2001] "Nonlinear system identification using wavelet multiresolution models," Int. J. Contr. 74, 1718-1736.
-
(2001)
Int. J. Contr.
, vol.74
, pp. 1718-1736
-
-
Coca, D.1
Billings, S.A.2
-
8
-
-
0000982546
-
Noise reduction schemes for chaotic time series
-
Davies, M. [1994] "Noise reduction schemes for chaotic time series," Physica D79, 174-192.
-
(1994)
Physica
, vol.D79
, pp. 174-192
-
-
Davies, M.1
-
9
-
-
0008241813
-
Nonlinear noise reduction through Monte Carlo sampling
-
Davies, M. [1999] "Nonlinear noise reduction through Monte Carlo sampling," Chaos 8, 775-781.
-
(1999)
Chaos
, vol.8
, pp. 775-781
-
-
Davies, M.1
-
10
-
-
36448999076
-
On noise reduction methods for chaotic data
-
Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C. & Schreiber, T. [1993] "On noise reduction methods for chaotic data," Chaos 3, 127-141.
-
(1993)
Chaos
, vol.3
, pp. 127-141
-
-
Grassberger, P.1
Hegger, R.2
Kantz, H.3
Schaffrath, C.4
Schreiber, T.5
-
11
-
-
0000810560
-
Practical implementation of nonlinear time series methods: The Tisean package
-
Hegger, R., Kantz, H. & Schreiber, T. [1999] "Practical implementation of nonlinear time series methods: The Tisean package," Chaos 9, 413-435.
-
(1999)
Chaos
, vol.9
, pp. 413-435
-
-
Hegger, R.1
Kantz, H.2
Schreiber, T.3
-
12
-
-
0001182355
-
Nonlinear noise reduction: A case study on experimental data
-
Kantz, H., Schreiber, T., Hoffmann, I., Buzug, T., Pfister, G., Flepp, L. G., Simonet, J., Badii, R. & Brun, E. [1993] "Nonlinear noise reduction: A case study on experimental data," Phys. Rev. E48, 1529-1538.
-
(1993)
Phys. Rev.
, vol.E48
, pp. 1529-1538
-
-
Kantz, H.1
Schreiber, T.2
Hoffmann, I.3
Buzug, T.4
Pfister, G.5
Flepp, L.G.6
Simonet, J.7
Badii, R.8
Brun, E.9
-
13
-
-
0024047911
-
Orthogonal parameter estimation algorithm for nonlinear stochastic systems
-
Korenberg, M. J., Billings, S. A., Liu, Y. P. & Mcilroy, P. J. [1988] "Orthogonal parameter estimation algorithm for nonlinear stochastic systems," Int. J. Contr. 48, 193-210.
-
(1988)
Int. J. Contr.
, vol.48
, pp. 193-210
-
-
Korenberg, M.J.1
Billings, S.A.2
Liu, Y.P.3
Mcilroy, P.J.4
-
14
-
-
17044390878
-
Noise reduc tion: Finding the simplest dynamical system consistent with the data
-
Kostelich, E. J. & York, J. A. [1990] "Noise reduc tion: Finding the simplest dynamical system consistent with the data," Physica D41, 183-196.
-
(1990)
Physica
, vol.D41
, pp. 183-196
-
-
Kostelich, E.J.1
York, J.A.2
-
15
-
-
0022011031
-
Input-output parametric models for nonlinear systems. Part I: Deterministic nonlinear systems
-
Leontaritis, I. J. & Billings, S. A. [1985a] "Input-output parametric models for nonlinear systems. Part I: Deterministic nonlinear systems," Int. J. Contr. 41, 303-328.
-
(1985)
Int. J. Contr.
, vol.41
, pp. 303-328
-
-
Leontaritis, I.J.1
Billings, S.A.2
-
16
-
-
0022011215
-
Input-output parametric models for nonlinear systems. Part II: Stochastic nonlinear systems
-
Leontaritis, I. J. & Billings, S. A. [1985b] "Input-output parametric models for nonlinear systems. Part II: Stochastic nonlinear systems," Int. J. Contr. 41, 329-344.
-
(1985)
Int. J. Contr.
, vol.41
, pp. 329-344
-
-
Leontaritis, I.J.1
Billings, S.A.2
-
18
-
-
0000662153
-
Dangers of geometric filtering
-
Mees, A. I. & Judd, K. [1993] "Dangers of geometric filtering," Physica D68, 427-436.
-
(1993)
Physica
, vol.D68
, pp. 427-436
-
-
Mees, A.I.1
Judd, K.2
-
19
-
-
0001981585
-
Observing and predicting chaotic signal: Is 2% noise too much?
-
eds. Kravtsw, Y. & Kadtke, J., Springer Series in Synergetics (Springer, NY)
-
Schreiber, T. & Kantz, H. [1996] "Observing and predicting chaotic signal: Is 2% noise too much?" Predictability of Complex Dynamical Systems, eds. Kravtsw, Y. & Kadtke, J., Springer Series in Synergetics, Vol. 69 (Springer, NY), pp. 1-24.
-
(1996)
Predictability of Complex Dynamical Systems
, vol.69
, pp. 1-24
-
-
Schreiber, T.1
Kantz, H.2
-
20
-
-
0032627865
-
Iterative SVD method for noise reduction of low-dimensional chaotic time series
-
Shin, K., Hammond, J. K. & White, P. R. [1999] "Iterative SVD method for noise reduction of low-dimensional chaotic time series," Mech. Syst. Sign. Process. 13, 115-124.
-
(1999)
Mech. Syst. Sign. Process.
, vol.13
, pp. 115-124
-
-
Shin, K.1
Hammond, J.K.2
White, P.R.3
|