메뉴 건너뛰기




Volumn 3, Issue 2 R, 1996, Pages 1-84

Proof of the alternating sign matrix conjecture

Author keywords

[No Author keywords available]

Indexed keywords


EID: 13744263836     PISSN: 10778926     EISSN: 10778926     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (240)

References (21)
  • 1
    • 0010783163 scopus 로고
    • Plane Partitions III: The weak Macdonald conjecture
    • [A1] G.E. Andrews, Plane Partitions III: the weak Macdonald conjecture, Invent. Math. 53(1979), 193-225.
    • (1979) Invent. Math. , vol.53 , pp. 193-225
    • Andrews, G.E.1
  • 2
    • 0001821423 scopus 로고
    • Plane Partitions V: The T.S.S.C.P.P conjecture
    • [A2] G.E. Andrews, Plane Partitions V: the T.S.S.C.P.P conjecture, J. Combin. Theory Ser. A, 66(1994), 28-39.
    • (1994) J. Combin. Theory Ser. A , vol.66 , pp. 28-39
    • Andrews, G.E.1
  • 3
    • 0000377925 scopus 로고
    • Basic properties of discrete analytic functions
    • R.J. Duffin, Basic properties of discrete analytic functions, Duke Math. J. 23(1956), 335-363.
    • (1956) Duke Math. J. , vol.23 , pp. 335-363
    • Duffin, R.J.1
  • 4
    • 0041782158 scopus 로고
    • Tournaments and Vandermonde's determinant
    • [G] I. Gessel, Tournaments and Vandermonde's determinant, J. Graph Theory 3(1979), 305-307.
    • (1979) J. Graph Theory , vol.3 , pp. 305-307
    • Gessel, I.1
  • 7
    • 48749144424 scopus 로고
    • Alternating sign matrices and descending plane partitions
    • [MRR2] W.H. Mills, D.P. Robbins, and H. Rumsey, Alternating sign matrices and descending plane partitions, J. Combin. Theo. Ser. A, 34(1983), 340-359.
    • (1983) J. Combin. Theo. Ser. A , vol.34 , pp. 340-359
    • Mills, W.H.1    Robbins, D.P.2    Rumsey, H.3
  • 8
    • 38249039970 scopus 로고
    • Self complementary totally symmetric plane partitions
    • [MRR3] W.H. Mills, D.P. Robbins, and H. Rumsey, Self complementary totally symmetric plane partitions, J. Combin. Theory Ser. A 42(1986), 277-292.
    • (1986) J. Combin. Theory Ser. A , vol.42 , pp. 277-292
    • Mills, W.H.1    Robbins, D.P.2    Rumsey, H.3
  • 10
    • 0002138401 scopus 로고
    • The story of 1, 2, 7, 42, 429, 7436
    • Spring
    • [R] D.P. Robbins, The story of 1, 2, 7, 42, 429, 7436, ..., Math. Intell v.13, #2(Spring 1991), 12-19.
    • (1991) Math. Intell , vol.13 , Issue.2 , pp. 12-19
    • Robbins, D.P.1
  • 11
    • 0000586439 scopus 로고
    • Determinants and alternating sign matrices
    • [RR] D.P. Robbins and H. Rumsey, Jr., Determinants and alternating sign matrices, Advances in Mathematics 62(1986), 169-184.
    • (1986) Advances in Mathematics , vol.62 , pp. 169-184
    • Robbins, D.P.1    Rumsey Jr., H.2
  • 12
    • 0040771284 scopus 로고
    • A baker's dozen of conjectures concerning plane partitions
    • Combinatoire Enumerative, ed. by G. Labelle and P. Leroux, Springer, Berlin
    • [Stanl] R.P. Stanley A baker's dozen of conjectures concerning plane partitions, in: COMBINATOIRE ENUMERATIVE, ed. by G. Labelle and P. Leroux, Lecture Notes in Mathematics 1234, Springer, Berlin, 1986.
    • (1986) Lecture Notes in Mathematics , vol.1234
    • Stanley, R.P.1
  • 13
    • 0040673341 scopus 로고
    • Sign variations of the Macdonald identities
    • [Stant] D. Stanton, Sign variations of the Macdonald identities, SIAM J. Math. Anal. 17(1986), 1454-1460.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 1454-1460
    • Stanton, D.1
  • 14
    • 84966251953 scopus 로고
    • A short proof of Macdonald's conjecture for the root system of type A
    • [Ste] J. Stembridge, A short proof of Macdonald's conjecture for the root system of type A, Proc. Amer. Math. Soc. 102(1988), 777-786.
    • (1988) Proc. Amer. Math. Soc. , vol.102 , pp. 777-786
    • Stembridge, J.1
  • 15
    • 0001169022 scopus 로고
    • An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities
    • [WZ] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities, Invent. Math. 108(1992), 575-633.
    • (1992) Invent. Math. , vol.108 , pp. 575-633
    • Wilf, H.S.1    Zeilberger, D.2
  • 16
    • 0010861998 scopus 로고
    • The algebra of linear partial difference operators and its applications
    • [Z1] D. Zeilberger, The algebra of linear partial difference operators and its applications, SIAM J. Math. Anal. 11(1980), 919-934.
    • (1980) SIAM J. Math. Anal. , vol.11 , pp. 919-934
    • Zeilberger, D.1
  • 17
    • 13744262989 scopus 로고
    • n > 0 and their applications to combinatorics
    • n > 0 and their applications to combinatorics, Discrete Math 31(1980), 65-77.
    • (1980) Discrete Math , vol.31 , pp. 65-77
    • Zeilberger, D.1
  • 18
    • 38149146728 scopus 로고
    • A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-Robbins-Rumsey numbers {1,2,7,42,429,...}
    • [Z3] D. Zeilberger, A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-Robbins-Rumsey numbers {1,2,7,42,429,...}, J. Combin. Theory Ser. A 66(1994), 17-27.
    • (1994) J. Combin. Theory Ser. A , vol.66 , pp. 17-27
    • Zeilberger, D.1
  • 19
    • 13744258899 scopus 로고
    • A unified approach to Macdonald's root-system conjectures
    • [Z4] D. Zeilberger, A unified approach to Macdonald's root-system conjectures, SIAM J. Math. Anal. 19(1988), 987-1013.
    • (1988) SIAM J. Math. Anal. , vol.19 , pp. 987-1013
    • Zeilberger, D.1
  • 20
    • 38249020310 scopus 로고
    • A Stembridge-Stanton style proof of the Habsieger-Kadell q-Morris identity
    • [Z5] D. Zeilberger, A Stembridge-Stanton style proof of the Habsieger-Kadell q-Morris identity, Discrete Math. 79(1989/90), 313-322.
    • (1989) Discrete Math. , vol.79 , pp. 313-322
    • Zeilberger, D.1
  • 21
    • 0010885011 scopus 로고
    • A proof of Andrews' q-Dyson conjecture
    • [ZB] D. Zeilberger and D.M. Bressoud, A proof of Andrews' q-Dyson conjecture, Discrete Math. 54(1985), 201-224.
    • (1985) Discrete Math. , vol.54 , pp. 201-224
    • Zeilberger, D.1    Bressoud, D.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.