-
1
-
-
33645049419
-
On nonlinear vibrations of systems with many degrees of freedom
-
R.M. Rosenberg On nonlinear vibrations of systems with many degrees of freedom Adv. Appl. Mech. 9 1966 155 242
-
(1966)
Adv. Appl. Mech.
, vol.9
, pp. 155-242
-
-
Rosenberg, R.M.1
-
2
-
-
0000809158
-
A direct method for non-linear normal modes
-
R.H. Rand A direct method for non-linear normal modes Int. J. Non-Linear Mech. 9 1974 363 368
-
(1974)
Int. J. Non-Linear Mech.
, vol.9
, pp. 363-368
-
-
Rand, R.H.1
-
3
-
-
0001394731
-
Bifurcation of nonlinear normal modes in a class of two degree of freedom systems
-
R.H. Rand, C.H. Pak, and A.F. Vakakis Bifurcation of nonlinear normal modes in a class of two degree of freedom systems Acta Mech. 3 1992 129 146
-
(1992)
Acta Mech.
, vol.3
, pp. 129-146
-
-
Rand, R.H.1
Pak, C.H.2
Vakakis, A.F.3
-
4
-
-
0028197991
-
On nonlinear modes of continuous systems
-
A.H. Nayfeh, and S.A. Nayfeh On nonlinear modes of continuous systems J. Vib. Acoust. 116 1994 129 136
-
(1994)
J. Vib. Acoust.
, vol.116
, pp. 129-136
-
-
Nayfeh, A.H.1
Nayfeh, S.A.2
-
5
-
-
0029292406
-
Nonlinear normal modes of a continuous system with quadratic nonlinearities
-
A.H. Nayfeh, and S.A. Nayfeh Nonlinear normal modes of a continuous system with quadratic nonlinearities J. Vib. Acoust. 117 1995 199 205
-
(1995)
J. Vib. Acoust.
, vol.117
, pp. 199-205
-
-
Nayfeh, A.H.1
Nayfeh, S.A.2
-
6
-
-
0032655393
-
Nonlinear normal modes of buckled beams: Three-to-one and one-to-one internal resonances
-
A.H. Nayfeh, W. Lacarbonara, and C. Chin Nonlinear normal modes of buckled beams three-to-one and one-to-one internal resonances Nonlinear Dynam. 18 1999 253 273
-
(1999)
Nonlinear Dynam.
, vol.18
, pp. 253-273
-
-
Nayfeh, A.H.1
Lacarbonara, W.2
Chin, C.3
-
7
-
-
0028461550
-
An energy-based formulation for computing nonlinear normal modes in undamped continuous systems
-
M.E. King, and A.F. Vakakis An energy-based formulation for computing nonlinear normal modes in undamped continuous systems J. Vib. Acoust. 116 1994 332 340
-
(1994)
J. Vib. Acoust.
, vol.116
, pp. 332-340
-
-
King, M.E.1
Vakakis, A.F.2
-
8
-
-
0001313559
-
An energy-based approach to computing resonant nonlinear normal modes
-
M.E. King, and A.F. Vakakis An energy-based approach to computing resonant nonlinear normal modes ASME J. Appl. Mech. 63 1996 810 819
-
(1996)
ASME J. Appl. Mech.
, vol.63
, pp. 810-819
-
-
King, M.E.1
Vakakis, A.F.2
-
9
-
-
0026923335
-
Normal modes and global dynamics of a two-degree-of-freedom non-linear system-i. low energies
-
A.F. Vakakis, and R.H. Rand Normal modes and global dynamics of a two-degree-of-freedom non-linear system-i. low energies Int. J. Non-Linear Mech. 27 1992 861 874
-
(1992)
Int. J. Non-Linear Mech.
, vol.27
, pp. 861-874
-
-
Vakakis, A.F.1
Rand, R.H.2
-
10
-
-
0027911991
-
Normal modes for non-linear vibratory systems
-
S.W. Shaw, and C. Pierre Normal modes for non-linear vibratory systems J. Sound Vib. 164 1 1993 85 124
-
(1993)
J. Sound Vib.
, vol.164
, Issue.1
, pp. 85-124
-
-
Shaw, S.W.1
Pierre, C.2
-
11
-
-
0028203123
-
Normal modes of vibration for non-linear continuous systems
-
S.W. Shaw, and C. Pierre Normal modes of vibration for non-linear continuous systems J. Sound Vib. 169 3 1993 319 347
-
(1993)
J. Sound Vib.
, vol.169
, Issue.3
, pp. 319-347
-
-
Shaw, S.W.1
Pierre, C.2
-
12
-
-
0029402739
-
On direct methods for constructing nonlinear normal modes of continuous systems
-
A.H. Nayfeh On direct methods for constructing nonlinear normal modes of continuous systems J. Vib. Control 1 1995 389 430
-
(1995)
J. Vib. Control
, vol.1
, pp. 389-430
-
-
Nayfeh, A.H.1
-
14
-
-
3943078943
-
-
Ph.D. Thesis, University of Rome Tre, Rome, Italy
-
R. Camillacci, Nonlinear modal analysis for systems with geometric nonlinearities: analytical and experimental methods, Ph.D. Thesis, University of Rome Tre, Rome, Italy, 2003.
-
(2003)
Nonlinear Modal Analysis for Systems with Geometric Nonlinearities: Analytical and Experimental Methods
-
-
Camillacci, R.1
-
15
-
-
0037474503
-
A new galerkin-based approach for accurate nonlinear normal modes through invariant manifolds
-
E. Pesheck, C. Pierre, and S.W. Shaw A new galerkin-based approach for accurate nonlinear normal modes through invariant manifolds J. Sound Vib. 249 5 2002 971 993
-
(2002)
J. Sound Vib.
, vol.249
, Issue.5
, pp. 971-993
-
-
Pesheck, E.1
Pierre, C.2
Shaw, S.W.3
-
16
-
-
2142657195
-
Large-amplitude non-linear normal modes of piecewise linear systems
-
D. Jiang, C. Pierre, and S.W. Shaw Large-amplitude non-linear normal modes of piecewise linear systems J. Sound Vib. 272 2004 869 891
-
(2004)
J. Sound Vib.
, vol.272
, pp. 869-891
-
-
Jiang, D.1
Pierre, C.2
Shaw, S.W.3
-
17
-
-
77956186192
-
Nonlinear normal modes of a rotating shaft based on the invariant manifold method
-
M. Legrand, D. Jiang, C. Pierre, and S.W. Shaw Nonlinear normal modes of a rotating shaft based on the invariant manifold method Int. J. Rotating Mach. 10 2004 1 17
-
(2004)
Int. J. Rotating Mach.
, vol.10
, pp. 1-17
-
-
Legrand, M.1
Jiang, D.2
Pierre, C.3
Shaw, S.W.4
-
18
-
-
0036554811
-
Model reduction of a nonlinear rotating beam through nonlinear normal modes
-
E. Pesheck, C. Pierre, and S.W. Shaw Model reduction of a nonlinear rotating beam through nonlinear normal modes ASME J. Vib. Acoust. 124 2 2002 229 236
-
(2002)
ASME J. Vib. Acoust.
, vol.124
, Issue.2
, pp. 229-236
-
-
Pesheck, E.1
Pierre, C.2
Shaw, S.W.3
-
19
-
-
0030193842
-
On nonlinear normal modes of systems with internal resonance
-
A.H. Nayfeh, C. Chin, and S.A. Nayfeh On nonlinear normal modes of systems with internal resonance ASME J. Vib. Acoust. 118 1996 340 345
-
(1996)
ASME J. Vib. Acoust.
, vol.118
, pp. 340-345
-
-
Nayfeh, A.H.1
Chin, C.2
Nayfeh, S.A.3
-
21
-
-
0037333828
-
Finite-element-based nonlinear modal reduction of a rotating beam with large-amplitude motion
-
P. Apiwattanalunggarn, S.W. Shaw, C. Pierre, and D. Jiang Finite-element-based nonlinear modal reduction of a rotating beam with large-amplitude motion J. Vib. Control 9 2003 235 263
-
(2003)
J. Vib. Control
, vol.9
, pp. 235-263
-
-
Apiwattanalunggarn, P.1
Shaw, S.W.2
Pierre, C.3
Jiang, D.4
|