-
2
-
-
0035370926
-
Relative loss bounds for on-line density estimation with the exponential family of distributions
-
K.S. Azoury, and M.K. Warmuth Relative loss bounds for on-line density estimation with the exponential family of distributions Machine Learn. 43 3 2001 211 246
-
(2001)
Machine Learn.
, vol.43
, Issue.3
, pp. 211-246
-
-
Azoury, K.S.1
Warmuth, M.K.2
-
3
-
-
4644274464
-
Generative model-based clustering of directional data
-
Banerjee, A., Dhillon, I., Ghosh, J., Sra, S., 2003. Generative model-based clustering of directional data. In: Proc. 9th Internat. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 19-28
-
(2003)
Proc. 9th Internat. Conf. on Knowledge Discovery and Data Mining (KDD)
, pp. 19-28
-
-
Banerjee, A.1
Dhillon, I.2
Ghosh, J.3
Sra, S.4
-
4
-
-
2942624165
-
Clustering with bregman divergences
-
Banerjee, A., Merugu, S., Dhillon, I., Ghosh, J., 2004. Clustering with bregman divergences. In: Proc. SIAM Internat. Conf. on Data Mining, pp. 234-245
-
(2004)
Proc. SIAM Internat. Conf. on Data Mining
, pp. 234-245
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.3
Ghosh, J.4
-
6
-
-
0034592783
-
A general probabilistic framework for clustering individuals and objects
-
Cadez, I.V., Gaffney, S., Smyth, P., 2000. A general probabilistic framework for clustering individuals and objects. In: Proc. 8th Internat. Conf. on Knowledge Discovery and Databases (KDD), pp. 140-149
-
(2000)
Proc. 8th Internat. Conf. on Knowledge Discovery and Databases (KDD)
, pp. 140-149
-
-
Cadez, I.V.1
Gaffney, S.2
Smyth, P.3
-
7
-
-
13544274679
-
Integrating multiple learned models for improving and scaling machine learning algorithms
-
P. Chan, S. Stolfo, and D. Wolpert Integrating multiple learned models for improving and scaling machine learning algorithms Machine Learn. 36 1-2 1996
-
(1996)
Machine Learn.
, vol.36
, Issue.1-2
-
-
Chan, P.1
Stolfo, S.2
Wolpert, D.3
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Statist. Soc., Series B (Methodological) 39 1 1977 1 38
-
(1977)
J. Roy. Statist. Soc., Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
11
-
-
12244265258
-
The inference problem: A survey
-
Farkas, C., Jajodia, S., 2002. The inference problem: A survey. SIGKDD Explorations 4(2), 6-11
-
(2002)
SIGKDD Explorations
, vol.4
, Issue.2
, pp. 6-11
-
-
Farkas, C.1
Jajodia, S.2
-
12
-
-
85043349209
-
Initialization of iterative refinement clustering algorithms
-
Fayyad, U.M., Reina, C., Bradley, P.S., 1998. Initialization of iterative refinement clustering algorithms. In: Proc. Internat. Conf. on Machine Learning (ICML), pp. 194-198
-
(1998)
Proc. Internat. Conf. on Machine Learning (ICML)
, pp. 194-198
-
-
Fayyad, U.M.1
Reina, C.2
Bradley, P.S.3
-
14
-
-
2542613410
-
Scalable clustering methods for data mining
-
N. Ye Lawrence Erlbaum
-
J. Ghosh Scalable clustering methods for data mining N. Ye Handbook of Data Mining 2003 Lawrence Erlbaum 247 277
-
(2003)
Handbook of Data Mining
, pp. 247-277
-
-
Ghosh, J.1
-
16
-
-
84949523513
-
Collective, hierarchical clustering from distributed, heterogeneous data
-
Zaki, M., Ho, C. (Eds.), Large-Scale Parallel KDD Systems
-
Johnson, E., Kargupta, H., 1999. Collective, hierarchical clustering from distributed, heterogeneous data. In: Zaki, M., Ho, C. (Eds.), Large-Scale Parallel KDD Systems, LNCS, vol. 1759, pp. 221-244
-
(1999)
LNCS
, vol.1759
, pp. 221-244
-
-
Johnson, E.1
Kargupta, H.2
-
17
-
-
78149340011
-
Random data perturbation techniques and privacy preserving data mining
-
Kargupta, H., Dutta, S., Wang, Q., Sivakumar, M., 2003. Random data perturbation techniques and privacy preserving data mining. In: Proc. IEEE Internat. Conf. on Data Mining (ICDM), pp. 99-106
-
(2003)
Proc. IEEE Internat. Conf. on Data Mining (ICDM)
, pp. 99-106
-
-
Kargupta, H.1
Dutta, S.2
Wang, Q.3
Sivakumar, M.4
-
18
-
-
84880800384
-
Distributed clustering based on sampling local density estimates
-
Klusch, M., Lodi, S., Moro, G., 2003. Distributed clustering based on sampling local density estimates. In: Proc. Internat. Joint Conf. on Artificial Intelligence (IJCAI), pp. 485-490
-
(2003)
Proc. Internat. Joint Conf. on Artificial Intelligence (IJCAI)
, pp. 485-490
-
-
Klusch, M.1
Lodi, S.2
Moro, G.3
-
20
-
-
0004087397
-
Probabilistic inference using Markov Chain Monte Carlo methods
-
Department of Computer Science, University of Toronto
-
Neal, R.M., 1993. Probabilistic inference using Markov Chain Monte Carlo methods. Tech. Rep. CRG-TR-93-1, Department of Computer Science, University of Toronto
-
(1993)
Tech. Rep.
, vol.CRG-TR-93-1
-
-
Neal, R.M.1
-
22
-
-
4544312695
-
Cryptographic techniques for privacy-preserving data mining
-
B. Pinkas Cryptographic techniques for privacy-preserving data mining SIGKDD Explorations 4 2 2002 12 19
-
(2002)
SIGKDD Explorations
, vol.4
, Issue.2
, pp. 12-19
-
-
Pinkas, B.1
-
24
-
-
0041965980
-
Cluster ensembles-a knowledge reuse framework for combining partitionings
-
A. Strehl, and J. Ghosh Cluster ensembles-a knowledge reuse framework for combining partitionings J. Machine Learn. Res. 3 2002 583 617
-
(2002)
J. Machine Learn. Res.
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
27
-
-
0345777519
-
Distributed cooperative Bayesian learning strategies
-
K. Yamanishi Distributed cooperative Bayesian learning strategies Inform. Comput. 150 1998 22 56
-
(1998)
Inform. Comput.
, vol.150
, pp. 22-56
-
-
Yamanishi, K.1
-
28
-
-
2142687208
-
A unified framework for model-based clustering
-
S. Zhong, and J. Ghosh A unified framework for model-based clustering J. Machine Learn. Res. 4 2003 1001 1037
-
(2003)
J. Machine Learn. Res.
, vol.4
, pp. 1001-1037
-
-
Zhong, S.1
Ghosh, J.2
|