메뉴 건너뛰기




Volumn 26, Issue 4, 2005, Pages 399-410

A privacy-sensitive approach to distributed clustering

Author keywords

Distributed clustering; Generative models; Privacy

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; CONSTRAINT THEORY; DATA MINING; DATABASE SYSTEMS; DISTRIBUTED COMPUTER SYSTEMS; MATHEMATICAL MODELS; PROBABILITY;

EID: 13544255384     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2004.08.003     Document Type: Article
Times cited : (30)

References (28)
  • 2
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • K.S. Azoury, and M.K. Warmuth Relative loss bounds for on-line density estimation with the exponential family of distributions Machine Learn. 43 3 2001 211 246
    • (2001) Machine Learn. , vol.43 , Issue.3 , pp. 211-246
    • Azoury, K.S.1    Warmuth, M.K.2
  • 7
    • 13544274679 scopus 로고    scopus 로고
    • Integrating multiple learned models for improving and scaling machine learning algorithms
    • P. Chan, S. Stolfo, and D. Wolpert Integrating multiple learned models for improving and scaling machine learning algorithms Machine Learn. 36 1-2 1996
    • (1996) Machine Learn. , vol.36 , Issue.1-2
    • Chan, P.1    Stolfo, S.2    Wolpert, D.3
  • 11
    • 12244265258 scopus 로고    scopus 로고
    • The inference problem: A survey
    • Farkas, C., Jajodia, S., 2002. The inference problem: A survey. SIGKDD Explorations 4(2), 6-11
    • (2002) SIGKDD Explorations , vol.4 , Issue.2 , pp. 6-11
    • Farkas, C.1    Jajodia, S.2
  • 14
    • 2542613410 scopus 로고    scopus 로고
    • Scalable clustering methods for data mining
    • N. Ye Lawrence Erlbaum
    • J. Ghosh Scalable clustering methods for data mining N. Ye Handbook of Data Mining 2003 Lawrence Erlbaum 247 277
    • (2003) Handbook of Data Mining , pp. 247-277
    • Ghosh, J.1
  • 16
    • 84949523513 scopus 로고    scopus 로고
    • Collective, hierarchical clustering from distributed, heterogeneous data
    • Zaki, M., Ho, C. (Eds.), Large-Scale Parallel KDD Systems
    • Johnson, E., Kargupta, H., 1999. Collective, hierarchical clustering from distributed, heterogeneous data. In: Zaki, M., Ho, C. (Eds.), Large-Scale Parallel KDD Systems, LNCS, vol. 1759, pp. 221-244
    • (1999) LNCS , vol.1759 , pp. 221-244
    • Johnson, E.1    Kargupta, H.2
  • 20
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov Chain Monte Carlo methods
    • Department of Computer Science, University of Toronto
    • Neal, R.M., 1993. Probabilistic inference using Markov Chain Monte Carlo methods. Tech. Rep. CRG-TR-93-1, Department of Computer Science, University of Toronto
    • (1993) Tech. Rep. , vol.CRG-TR-93-1
    • Neal, R.M.1
  • 22
    • 4544312695 scopus 로고    scopus 로고
    • Cryptographic techniques for privacy-preserving data mining
    • B. Pinkas Cryptographic techniques for privacy-preserving data mining SIGKDD Explorations 4 2 2002 12 19
    • (2002) SIGKDD Explorations , vol.4 , Issue.2 , pp. 12-19
    • Pinkas, B.1
  • 24
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining partitionings
    • A. Strehl, and J. Ghosh Cluster ensembles-a knowledge reuse framework for combining partitionings J. Machine Learn. Res. 3 2002 583 617
    • (2002) J. Machine Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 27
    • 0345777519 scopus 로고    scopus 로고
    • Distributed cooperative Bayesian learning strategies
    • K. Yamanishi Distributed cooperative Bayesian learning strategies Inform. Comput. 150 1998 22 56
    • (1998) Inform. Comput. , vol.150 , pp. 22-56
    • Yamanishi, K.1
  • 28
    • 2142687208 scopus 로고    scopus 로고
    • A unified framework for model-based clustering
    • S. Zhong, and J. Ghosh A unified framework for model-based clustering J. Machine Learn. Res. 4 2003 1001 1037
    • (2003) J. Machine Learn. Res. , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.