-
2
-
-
0035402689
-
Slowly oscillating periodic solutions for a delayed frustrated network of two neurons
-
Y. Chen, and J. Wu slowly oscillating periodic solutions for a delayed frustrated network of two neurons J. Math. Anal. Appl. 259 2001 188 208
-
(2001)
J. Math. Anal. Appl.
, vol.259
, pp. 188-208
-
-
Chen, Y.1
Wu, J.2
-
3
-
-
0347130009
-
Stability and bifurcation in a neural network model with two delays
-
J. Wei, and S. Ruan Stability and bifurcation in a neural network model with two delays Physica D 130 1999 255 272
-
(1999)
Physica D
, vol.130
, pp. 255-272
-
-
Wei, J.1
Ruan, S.2
-
4
-
-
0034693565
-
On a planar system modelling a neuron network with memory
-
T. Faria On a planar system modelling a neuron network with memory J. Differ. Equat. 168 2000 129 149
-
(2000)
J. Differ. Equat.
, vol.168
, pp. 129-149
-
-
Faria, T.1
-
5
-
-
1242266495
-
Oscillatory phenomena and stability of periodic solutions in a simple neural net work with delay
-
J. Wei, M. Velarde, V. Makarov, and F. Panetsos Oscillatory phenomena and stability of periodic solutions in a simple neural net work with delay Nonlinear Phenom. Complex Syst. 5 4 2002 407 417
-
(2002)
Nonlinear Phenom. Complex Syst.
, vol.5
, Issue.4
, pp. 407-417
-
-
Wei, J.1
Velarde, M.2
Makarov, V.3
Panetsos, F.4
-
6
-
-
33646864830
-
Symmetric functional differential equations and neural networks with memory
-
J. Wu Symmetric functional differential equations and neural networks with memory Trans. Am. Math. Soc. 350 1998 4799 4838
-
(1998)
Trans. Am. Math. Soc.
, vol.350
, pp. 4799-4838
-
-
Wu, J.1
-
7
-
-
0039182052
-
The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations
-
Neville J. Ford, and Volker Wulf The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations JCAM 111 1999 153 162
-
(1999)
JCAM
, vol.111
, pp. 153-162
-
-
Ford Neville, J.1
Volker, W.2
-
8
-
-
0038949330
-
Numerical Hopf bifurcation for the delay logistic equation
-
Manchester Center for Computational Mathematics
-
Ford NJ, Wulf V. Numerical Hopf bifurcation for the delay logistic equation. Technical Report 323, Manchester Center for Computational Mathematics; 1998
-
(1998)
Technical Report
, vol.323
-
-
Ford, N.J.1
Wulf, V.2
-
9
-
-
0006811833
-
Naimark-Sacker bifurcations in the Euler method for a delay differential equations
-
T. Koto Naimark-Sacker bifurcations in the Euler method for a delay differential equations BIT 39 1999 110 115
-
(1999)
BIT
, vol.39
, pp. 110-115
-
-
Koto, T.1
-
10
-
-
0037860065
-
Numerical Hopf bifurcation for a class of delay differential equations
-
NJ. Ford, and V Wulf Numerical Hopf bifurcation for a class of delay differential equations JCAM 115 2000 601 616
-
(2000)
JCAM
, vol.115
, pp. 601-616
-
-
Ford, N.J.1
Wulf, V.2
-
11
-
-
0043192382
-
Hopf bifurcation in numerical approximation of a class delay differential equations
-
Chunrui Zhang, Mingzhu Liu, and Baodong Zheng Hopf bifurcation in numerical approximation of a class delay differential equations Appl Math Computat 146 31 2003 335 349
-
(2003)
Appl Math Computat
, vol.146
, Issue.31
, pp. 335-349
-
-
Chunrui, Z.1
Mingzhu, L.2
Baodong, Z.3
|