-
1
-
-
0031143383
-
Delay-differential equations versus 1D-map: Application to control chaos
-
P. Celka Delay-differential equations versus 1D-map: application to control chaos Physics D 104 1997 127 147
-
(1997)
Physics D
, vol.104
, pp. 127-147
-
-
Celka, P.1
-
2
-
-
0032642505
-
On time-delayed feedback control of chaotic systems
-
G. Chen, and X. Yu On time-delayed feedback control of chaotic systems IEEE Trans. Circuits syst. I46 1999 767 772
-
(1999)
IEEE Trans. Circuits Syst.
, vol.46
, pp. 767-772
-
-
Chen, G.1
Yu, X.2
-
3
-
-
45149140777
-
The stability of special symmetric solutions of with small amplitudes
-
P. Dormayer The stability of special symmetric solutions of with small amplitudes Nonlinear Anal. TMA 14 8 1990 701 715
-
(1990)
Nonlinear Anal. TMA
, vol.14
, Issue.8
, pp. 701-715
-
-
Dormayer, P.1
-
4
-
-
38249025408
-
Smooth bifurcation of symmetrical periodic solution of functional differential equations
-
P. Dormayer Smooth bifurcation of symmetrical periodic solution of functional differential equations J. Diff. Eqs. 122 1989 109 155
-
(1989)
J. Diff. Eqs.
, vol.122
, pp. 109-155
-
-
Dormayer, P.1
-
5
-
-
0000840164
-
Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation
-
T. Faria, and L.T. Magalhães Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation J. Diff. Eqs. 122 1995 181 200
-
(1995)
J. Diff. Eqs.
, vol.122
, pp. 181-200
-
-
Faria, T.1
Magalhães, L.T.2
-
6
-
-
13444265769
-
Normal forms for retarded functional differential equations and applications to Bogdanov Takens singularity
-
T. Faria, and L.T. Magalhães Normal forms for retarded functional differential equations and applications to Bogdanov Takens singularity J. Diff. Eqs. 82 1995 109 155
-
(1995)
J. Diff. Eqs.
, vol.82
, pp. 109-155
-
-
Faria, T.1
Magalhães, L.T.2
-
7
-
-
84972500463
-
Existence of periodic solutions of one-dimensional differential equations
-
T. Furumuchi Existence of periodic solutions of one-dimensional differential equations Tôholu Math. J. 30 1980 13 35
-
(1980)
Tôholu Math. J.
, vol.30
, pp. 13-35
-
-
Furumuchi, T.1
-
8
-
-
34250250639
-
Effective computation of periodic orbits and bifurcation diagrams in delay equations
-
K.P. Hadeler Effective computation of periodic orbits and bifurcation diagrams in delay equations Numer. Math. 34 1980 457 467
-
(1980)
Numer. Math.
, vol.34
, pp. 457-467
-
-
Hadeler, K.P.1
-
11
-
-
0003743332
-
-
World Scientific Singapore
-
B.L. Hao Chaos II 1990 World Scientific Singapore pp. 620-632
-
(1990)
Chaos II
-
-
Hao, B.L.1
-
12
-
-
0346338234
-
Periodic orbits of delay differential equations under discretization
-
K. In't Hout, and C. Lubich Periodic orbits of delay differential equations under discretization BIT 38 1 1998 72 91
-
(1998)
BIT
, vol.38
, Issue.1
, pp. 72-91
-
-
In't Hout, K.1
Lubich, C.2
-
14
-
-
0016128963
-
Ordinary differential equations which yields periodic solutions of delay differential equations
-
J.L. Kaplan, and J.A. Yorke Ordinary differential equations which yields periodic solutions of delay differential equations J. Math. Anal. Appl. 48 1974 317 324
-
(1974)
J. Math. Anal. Appl.
, vol.48
, pp. 317-324
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
17
-
-
0006811833
-
Naimark-Sacker bifurcations in the Euler method for a delay differential equation
-
T. Koto Naimark-Sacker bifurcations in the Euler method for a delay differential equation BIT 39 1 1998 110 115
-
(1998)
BIT
, vol.39
, Issue.1
, pp. 110-115
-
-
Koto, T.1
-
18
-
-
0035577518
-
Periodic orbits in the Euler methods for a class of delay differential equations
-
T. Koto Periodic orbits in the Euler methods for a class of delay differential equations Comput. Math. Appli. 42 2001 1597 1608
-
(2001)
Comput. Math. Appli.
, vol.42
, pp. 1597-1608
-
-
Koto, T.1
-
19
-
-
0003302813
-
Delay differential equations with applications in population dynamics
-
Boston: Academic Press
-
Kuang Y. Delay differential equations with applications in population dynamics, in Mathematics in Science and Engineering. Vol. 191, Boston: Academic Press; 1993
-
(1993)
Mathematics in Science and Engineering
, vol.191
-
-
Kuang, Y.1
-
21
-
-
0016946745
-
A note on difference-delay equations
-
S.A. Levin, and R.M. May A note on difference-delay equations Theoret. Popul. Biol. 9 1976 178 187
-
(1976)
Theoret. Popul. Biol.
, vol.9
, pp. 178-187
-
-
Levin, S.A.1
May, R.M.2
-
23
-
-
0031999382
-
A chaos generator: Analyses of complex dynamics of a cell equation in delayed cellular neural networks
-
H. Lu, Y. He, and Z. He A chaos generator: analyses of complex dynamics of a cell equation in delayed cellular neural networks IEEE Trans. Circuits Syst. I 45 1998 700 702
-
(1998)
IEEE Trans. Circuits Syst. I
, vol.45
, pp. 700-702
-
-
Lu, H.1
He, Y.2
He, Z.3
-
24
-
-
0017714604
-
Oscillation and chaos in physiologyical systems
-
M.C. Mackey, and L. Glass Oscillation and chaos in physiologyical systems Science 197 1977 287 289
-
(1977)
Science
, vol.197
, pp. 287-289
-
-
MacKey, M.C.1
Glass, L.2
-
25
-
-
0002545609
-
Stabilization of an unstable steady-state in a Mackey-Glass System
-
A. Namajunas, K. Pyragas, and A. Tamasevicius Stabilization of an unstable steady-state in a Mackey-Glass System Phys. Lett. A204 1995 255 262
-
(1995)
Phys. Lett.
, vol.204
, pp. 255-262
-
-
Namajunas, A.1
Pyragas, K.2
Tamasevicius, A.3
-
26
-
-
49249146492
-
Uniqueness and nonuniqueness for periodic solutions of x′(t) = -g (x(t - 1))
-
R.G. Nussbaum Uniqueness and nonuniqueness for periodic solutions of x′(t) = -g (x(t - 1)) J. Diff. Eqs. 34 1979 25 54
-
(1979)
J. Diff. Eqs.
, vol.34
, pp. 25-54
-
-
Nussbaum, R.G.1
-
28
-
-
0242270961
-
Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model
-
M.S. Peng Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model Chaos, Solitons and Fractals 20 3 2004 489 496
-
(2004)
Chaos, Solitons and Fractals
, vol.20
, Issue.3
, pp. 489-496
-
-
Peng, M.S.1
-
29
-
-
1842832057
-
Bifurcation and chaotic behavior in the Euler method for a Ucar prototype delay model
-
M.S. Peng Bifurcation and chaotic behavior in the Euler method for a Ucar prototype delay model Chaos, Solitons and Fractals 22 2 2004 483 493
-
(2004)
Chaos, Solitons and Fractals
, vol.22
, Issue.2
, pp. 483-493
-
-
Peng, M.S.1
-
30
-
-
2042511650
-
On the synchronization of delay discrete models
-
M.S. Peng, E.W. Bai, and K.E. Lonngren On the synchronization of delay discrete models Chaos, Solitons and Fractals 22 3 2004 573 576
-
(2004)
Chaos, Solitons and Fractals
, vol.22
, Issue.3
, pp. 573-576
-
-
Peng, M.S.1
Bai, E.W.2
Lonngren, K.E.3
-
31
-
-
1542290093
-
The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximations of delay differential equations
-
M.S. Peng, and A. Ucar The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximations of delay differential equations Chaos, Solitons and Fractals 21 4 2004 883 891
-
(2004)
Chaos, Solitons and Fractals
, vol.21
, Issue.4
, pp. 883-891
-
-
Peng, M.S.1
Ucar, A.2
-
32
-
-
0036600405
-
The generalized Henon maps: Examples for higher-dimensional chaos
-
H. Richter The generalized Henon maps: examples for higher-dimensional chaos Int. J. Bifurcation and Chaos 12 6 2002 1371 1384
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, Issue.6
, pp. 1371-1384
-
-
Richter, H.1
-
33
-
-
0027678307
-
Model of musical instruments from Chua's circuit with time delay
-
X. Robert Model of musical instruments from Chua's circuit with time delay IEEE Trans. Circuits syst. II 40 1993 196 701
-
(1993)
IEEE Trans. Circuits Syst. II
, vol.40
, pp. 196-701
-
-
Robert, X.1
-
34
-
-
0026913847
-
Cellular neural networks with nonlinear and delay-type template elements
-
T. Roska, and L.C. Chua Cellular neural networks with nonlinear and delay-type template elements Int. J. Circuit Theory Appl. 20 1992 469 489
-
(1992)
Int. J. Circuit Theory Appl.
, vol.20
, pp. 469-489
-
-
Roska, T.1
Chua, L.C.2
-
35
-
-
13444294122
-
Period-doubling reversals and chaos in simple ecological models
-
L. Stone Period-doubling reversals and chaos in simple ecological models Nature 363 1993 411 441
-
(1993)
Nature
, vol.363
, pp. 411-441
-
-
Stone, L.1
-
36
-
-
0003508415
-
-
MathWorks Inc., Natic, MA
-
The MathWork Inc. Matlab Version 5.1. MathWorks Inc., Natic, MA, 1997
-
(1997)
Matlab Version 5.1
-
-
-
37
-
-
0037332886
-
On the chaotic behavior of a prototype delayed dynamical system
-
A. Uçar On the chaotic behavior of a prototype delayed dynamical system Chaos, Solitons and Fractals 16 2003 187 194
-
(2003)
Chaos, Solitons and Fractals
, vol.16
, pp. 187-194
-
-
Uçar, A.1
-
38
-
-
0036027901
-
A prototype model for chaos studies
-
A. Uçar A prototype model for chaos studies Int. J. Eng. Sci. 40 2002 251 258
-
(2002)
Int. J. Eng. Sci.
, vol.40
, pp. 251-258
-
-
Uçar, A.1
-
39
-
-
0034366942
-
Anticontrol of chaos in continuous-time systems via time-delay feedback
-
X. Wang, G. Chen, and X. Yu Anticontrol of chaos in continuous-time systems via time-delay feedback Chaos 10 4 2000 771 779
-
(2000)
Chaos
, vol.10
, Issue.4
, pp. 771-779
-
-
Wang, X.1
Chen, G.2
Yu, X.3
|