메뉴 건너뛰기




Volumn , Issue 7, 2004, Pages 343-360

On G-Function of Frobenius Manifolds Related to Hurwitz Spaces

Author keywords

[No Author keywords available]

Indexed keywords


EID: 1342332923     PISSN: 10737928     EISSN: None     Source Type: Journal    
DOI: 10.1155/s1073792804131024     Document Type: Article
Times cited : (23)

References (16)
  • 1
    • 0034215546 scopus 로고    scopus 로고
    • Frobenius manifold structure on orbit space of Jacobi groups. I
    • M. Bertola, Frobenius manifold structure on orbit space of Jacobi groups. I, Differential Geom. Appl. 13 (2000), no. 1, 19-41.
    • (2000) Differential Geom. Appl. , vol.13 , Issue.1 , pp. 19-41
    • Bertola, M.1
  • 2
    • 0013086321 scopus 로고    scopus 로고
    • Frobenius manifold structure on orbit space of Jacobi groups. II
    • _, Frobenius manifold structure on orbit space of Jacobi groups. II, Differential Geom. Appl. 13 (2000), no. 3, 213-233.
    • (2000) Differential Geom. Appl. , vol.13 , Issue.3 , pp. 213-233
  • 3
    • 0000644797 scopus 로고    scopus 로고
    • Geometry of 2D topological field theories, Integrable Systems and Quantum Groups (Montecatini Terme, 1993)
    • Springer, Berlin
    • B. Dubrovin, Geometry of 2D topological field theories, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 120-348.
    • (1996) Lecture Notes in Math. , vol.1620 , pp. 120-348
    • Dubrovin, B.1
  • 4
    • 0000322926 scopus 로고    scopus 로고
    • Extended affine Weyl groups and Frobenius manifolds
    • B. Dubrovin and Y. Zhang, Extended affine Weyl groups and Frobenius manifolds, Compositio Math. 111 (1998), no. 2, 167-219.
    • (1998) Compositio Math. , vol.111 , Issue.2 , pp. 167-219
    • Dubrovin, B.1    Zhang, Y.2
  • 5
    • 0032276702 scopus 로고    scopus 로고
    • Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation
    • _, Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation, Comm. Math. Phys. 198 (1998), no. 2, 311-361.
    • (1998) Comm. Math. Phys. , vol.198 , Issue.2 , pp. 311-361
  • 6
    • 0000485488 scopus 로고    scopus 로고
    • Frobenius manifolds and Virasoro constraints
    • _, Frobenius manifolds and Virasoro constraints, Selecta Math. (N.S.) 5 (1999), no. 4, 423-466.
    • (1999) Selecta Math. (N.S.) , vol.5 , Issue.4 , pp. 423-466
  • 7
    • 0003351912 scopus 로고
    • Theta Functions on Riemann Surfaces
    • Springer-Verlag, Berlin
    • J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, Springer-Verlag, Berlin, 1973.
    • (1973) Lecture Notes in Math. , vol.352
    • Fay, J.D.1
  • 10
    • 1342306914 scopus 로고    scopus 로고
    • Tau-function on Hurwitz spaces
    • _, Tau-function on Hurwitz spaces, to appear in Math. Phys. Anal. Geom.
    • Math. Phys. Anal. Geom.
  • 11
    • 0003292176 scopus 로고    scopus 로고
    • Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces
    • American Mathematical Society, Rhode Island
    • Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, vol. 47, American Mathematical Society, Rhode Island, 1999.
    • (1999) American Mathematical Society Colloquium Publications , vol.47
    • Manin, Yu.I.1
  • 13
    • 0003395274 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • S. M. Natanzon, Hurwitz spaces, Topics on Riemann Surfaces and Fuchsian Groups (Madrid, 1998), London Math. Soc. Lecture Note Ser., vol. 287, Cambridge University Press, Cambridge, 2001, pp. 165-177.
    • (2001) London Math. Soc. Lecture Note Ser. , vol.287 , pp. 165-177
  • 14
    • 84980081270 scopus 로고
    • Weierstrass points, branch points, and moduli of Riemann surfaces
    • H. E. Rauch, Weierstrass points, branch points, and moduli of Riemann surfaces, Comm. Pure Appl. Math. 12 (1959), 543-560.
    • (1959) Comm. Pure Appl. Math. , vol.12 , pp. 543-560
    • Rauch, H.E.1
  • 15
    • 0037269220 scopus 로고    scopus 로고
    • Symmetries and solutions of Getzler's equation for Coxeter and extended affine Weyl Frobenius manifolds
    • I. A. B. Strachan, Symmetries and solutions of Getzler's equation for Coxeter and extended affine Weyl Frobenius manifolds, Int. Math. Res. Not. 2003 (2003), no. 19, 1035-1051.
    • (2003) Int. Math. Res. Not. , vol.2003 , Issue.19 , pp. 1035-1051
    • Strachan, I.A.B.1
  • 16
    • 0011403082 scopus 로고
    • Periods of quadratic differentials
    • Russian
    • A. N. Tyurin, Periods of quadratic differentials, Uspekhi Mat. Nauk 33 (1978), no. 6(204), 149-195, (Russian).
    • (1978) Uspekhi Mat. Nauk , vol.33 , Issue.6-204 , pp. 149-195
    • Tyurin, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.