-
2
-
-
36449002819
-
-
Tsuboi, Y.; Fukumura, H.; Masuhara, H. Appl. Phys. Lett. 1994, 64, 2745.
-
(1994)
Appl. Phys. Lett.
, vol.64
, pp. 2745
-
-
Tsuboi, Y.1
Fukumura, H.2
Masuhara, H.3
-
3
-
-
33751154769
-
-
Tsuboi, Y.; Fukumura, H.; Masuhara, H. J. Phys. Chem. 1995, 99, 10305.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 10305
-
-
Tsuboi, Y.1
Fukumura, H.2
Masuhara, H.3
-
4
-
-
0031343403
-
-
Hatanaka, K.; Kawao, M.; Tsuboi, Y.; Fukumura, H.; Masuhara, H. J. Appl. Phys. 1997, 82, 5799.
-
(1997)
J. Appl. Phys.
, vol.82
, pp. 5799
-
-
Hatanaka, K.1
Kawao, M.2
Tsuboi, Y.3
Fukumura, H.4
Masuhara, H.5
-
5
-
-
0037188013
-
-
Hatanaka, K.; Tsuboi, Y.; Fukumura, H.; Masuhara, H. J. Phys. Chem. B 2002, 106, 3049.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 3049
-
-
Hatanaka, K.1
Tsuboi, Y.2
Fukumura, H.3
Masuhara, H.4
-
8
-
-
33749529676
-
-
Faubel, M.; Schlemmer, S.; Toennies, J. P. Z. Phys. 1988, D10, 269.
-
(1988)
Z. Phys.
, vol.D10
, pp. 269
-
-
Faubel, M.1
Schlemmer, S.2
Toennies, J.P.3
-
10
-
-
1342275173
-
-
Kleinekofort, W.; Avdiev, J.; Brutschy, B. Int. J. Mass Spectrosc. 1996, 152, 135.
-
(1996)
Int. J. Mass Spectrosc.
, vol.152
, pp. 135
-
-
Kleinekofort, W.1
Avdiev, J.2
Brutschy, B.3
-
11
-
-
1342338796
-
-
Kleinekofort, W.; Schweitzerm, M.; Engels, J. W.; Brutschy, B. Int. J. Mass Spectrosc. 1996, 156, 195.
-
(1996)
Int. J. Mass Spectrosc.
, vol.156
, pp. 195
-
-
Kleinekofort, W.1
Schweitzerm, M.2
Engels, J.W.3
Brutschy, B.4
-
12
-
-
21244484036
-
-
Kleinekofort, W.; Schweitzerm M.; Engels, J. W.; Brutschy, B. Int. J. Mass Spectrosc. 1997, 153, 1.
-
(1997)
Int. J. Mass Spectrosc.
, vol.153
, pp. 1
-
-
Kleinekofort, W.1
Schweitzerm, M.2
Engels, J.W.3
Brutschy, B.4
-
13
-
-
0031234102
-
-
Sobott, F.; Kleinekofort, W.; Brutschy, B. Anal. Chem. 1997, 69, 3587.
-
(1997)
Anal. Chem.
, vol.69
, pp. 3587
-
-
Sobott, F.1
Kleinekofort, W.2
Brutschy, B.3
-
14
-
-
84889964851
-
-
Sobott, F.; Wattenberg, A.; Barth, H.; Brutschy, B. Int. J. Mass Spectrosc. 1999, 185, 271.
-
(1999)
Int. J. Mass Spectrosc.
, vol.185
, pp. 271
-
-
Sobott, F.1
Wattenberg, A.2
Barth, H.3
Brutschy, B.4
-
15
-
-
0034731324
-
-
Wattenberg, A.; Sobott, F.; Barth, H.; Brutschy, B. Int. J. Mass Spectrosc. 2000, 203, 49.
-
(2000)
Int. J. Mass Spectrosc.
, vol.203
, pp. 49
-
-
Wattenberg, A.1
Sobott, F.2
Barth, H.3
Brutschy, B.4
-
16
-
-
0036770753
-
-
Charvat, A.; Lugovoj, E.; Faubel, M.; Abel B. Eur. Phys. J. D 2002, 20, 573.
-
(2002)
Eur. Phys. J. D
, vol.20
, pp. 573
-
-
Charvat, A.1
Lugovoj, E.2
Faubel, M.3
Abel, B.4
-
17
-
-
0001726134
-
-
Horimoto, N.; Kohno, J.; Mafuné, F.; Kondow, T. J. Phys. Chem. A 1999, 103, 9569.
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 9569
-
-
Horimoto, N.1
Kohno, J.2
Mafuné, F.3
Kondow, T.4
-
18
-
-
0001527268
-
-
Horimoto, N., Kohno, J.; Mafuné, F.; Kondow, T. Chem. Phys. Lett. 2000, 318, 536.
-
(2000)
Chem. Phys. Lett.
, vol.318
, pp. 536
-
-
Horimoto, N.1
Kohno, J.2
Mafuné, F.3
Kondow, T.4
-
19
-
-
0035807685
-
-
Kohno, J.; Mafuné, F.; Kondow, T. J. Phys. Chem. A 2001, 105, 8939.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 8939
-
-
Kohno, J.1
Mafuné, F.2
Kondow, T.3
-
22
-
-
1342275172
-
-
note
-
2 (a) MV = mv + (M-m)v′ (b) where v and v′ are the velocities of the released molecule and the product cluster, respectively. Equations a and b are solved as V= v = v′ (c) X which means that the velocity of the cluster is conserved even after unimolecular dissociation
-
-
-
-
23
-
-
1342296298
-
-
note
-
In reality, the detection efficiency increases and levels off with increase in the kinetic energy neat the work function of an aluminum metal In a pulse-counting measurement, the detection efficiency changes simply the heights of signal pulses, but not the number of signal pulses In other words, the number of clusters is properly detected when the kinetic energy of the clusters exceeds the work function
-
-
-
-
24
-
-
1342317412
-
-
note
-
We have measured the size distribution of the product clusters, A(n), from their spatial distributions by changing the focal position of the UV laser from the liquid beam to the direction away from the liquid beam, where the UV laser is used to ionize the chromophores embedded in the clusters. The result reveals that the size of the clusters produced by IR laser ablation of the liquid beam decreases exponentially with their masses.
-
-
-
-
25
-
-
1342275171
-
-
note
-
The peaks are assigned to the fast and the slow components as follows: The abundance of the fast component decreases with an increase in the laser power as shown in panels a and b of Figure 2. It is concluded that the more abundant component is assigned to the slow component shown in panels c and d.
-
-
-
-
26
-
-
4243429913
-
-
Even, U.; de Lange, P. J.; Jonkman, H. Th.; Kommandeur, J. Phys. Rev. Lett. 1986, 56, 965.
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 965
-
-
Even, U.1
De Lange, P.J.2
Jonkman, H.Th.3
Kommandeur, J.4
-
27
-
-
0000284054
-
-
Vostrikov, A. A.; Zadorozhny, A. M.; Dubov, D. Yu.; Witt, G.; Kazakova, I. V.; Bragin, O. A.; Kazakov, V. G.; Kikhtenko, V. N.; Tyutin, A. A. Z. Phys. D 1997, 40, 542.
-
(1997)
Z. Phys. D
, vol.40
, pp. 542
-
-
Vostrikov, A.A.1
Zadorozhny, A.M.2
Dubov, D.Yu.3
Witt, G.4
Kazakova, I.V.5
Bragin, O.A.6
Kazakov, V.G.7
Kikhtenko, V.N.8
Tyutin, A.A.9
-
28
-
-
84975561053
-
-
Park, B.-S.; Biswas, A.; Armstrong, R. L. Opt. Lett. 1990, 15, 206.
-
(1990)
Opt. Lett.
, vol.15
, pp. 206
-
-
Park, B.-S.1
Biswas, A.2
Armstrong, R.L.3
-
29
-
-
1342338797
-
-
note
-
The dominant error of the start-time distribution originates from the error in the distance measurement, which is considered to be in a range of the diameter of the UV laser (∼100 μm) It turns out that the error of the start-time distribution is ∼0.1 μs.
-
-
-
|