메뉴 건너뛰기




Volumn 143, Issue 1, 2004, Pages 89-110

Semi-normal forms and functional representation of product fuzzy logic

Author keywords

Functional representation; Fuzzy logic; Normal forms; Product logic

Indexed keywords

ALGORITHMS; FUNCTIONS; INTEGER PROGRAMMING; LINEAR ALGEBRA; LINEAR PROGRAMMING; SEMANTICS; THEOREM PROVING;

EID: 1342285537     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2003.06.001     Document Type: Conference Paper
Times cited : (11)

References (10)
  • 1
    • 0000817320 scopus 로고    scopus 로고
    • Basic fuzzy logic is the logic of continuous t-norms and their residua
    • Cignoli R., Esteva F., Godo L., Torrens A. Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput. 2:2000;106-112.
    • (2000) Soft Comput. , vol.2 , pp. 106-112
    • Cignoli, R.1    Esteva, F.2    Godo, L.3    Torrens, A.4
  • 2
    • 0002450084 scopus 로고    scopus 로고
    • An algebraic analysis of product logic
    • Cignoli R., Torrens A. An algebraic analysis of product logic. Multiple-valued Logic. 5:2000;45-65.
    • (2000) Multiple-valued Logic , vol.5 , pp. 45-65
    • Cignoli, R.1    Torrens, A.2
  • 4
    • 0001365638 scopus 로고    scopus 로고
    • About axiomatic systems of product fuzzy logic
    • Cintula P. About axiomatic systems of product fuzzy logic. Soft Comput. 5:2001;243-244.
    • (2001) Soft Comput. , vol.5 , pp. 243-244
    • Cintula, P.1
  • 6
    • 0000673538 scopus 로고    scopus 로고
    • Basic fuzzy logic and BL-algebras
    • Hájek P. Basic fuzzy logic and BL-algebras. Soft Comput. 2:1998;124-128.
    • (1998) Soft Comput. , vol.2 , pp. 124-128
    • Hájek, P.1
  • 8
    • 0030304456 scopus 로고    scopus 로고
    • A complete many-valued logic with product conjunction
    • Hájek P., Godo L., Esteva F. A complete many-valued logic with product conjunction. Arch. Math. Logic. 35:1996;191-208.
    • (1996) Arch. Math. Logic , vol.35 , pp. 191-208
    • Hájek, P.1    Godo, L.2    Esteva, F.3
  • 9
    • 0002141730 scopus 로고
    • A theorem about infinite-valued sentential logic
    • McNaughton R. A theorem about infinite-valued sentential logic. J. Symbolic Logic. 16:1951;1-13.
    • (1951) J. Symbolic Logic , vol.16 , pp. 1-13
    • Mcnaughton, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.