메뉴 건너뛰기




Volumn 12, Issue 4, 2004, Pages 505-524

A multi-layer dynamic neural network for convex-hull computation

Author keywords

Convex hull; MAXNET; Neural networks; Planar set; Self organization

Indexed keywords

ALGORITHMS; COMPUTATIONAL GEOMETRY; MATHEMATICAL MODELS; SET THEORY;

EID: 13244287809     PISSN: 10615369     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (43)
  • 1
    • 0000982419 scopus 로고
    • Applications of parametric searching in geometric optimization
    • Agarwal, P.K. (1994). Applications of parametric searching in geometric optimization. J. Algorithms, v. 17, pp. 292-318.
    • (1994) J. Algorithms , vol.17 , pp. 292-318
    • Agarwal, P.K.1
  • 5
    • 0027540720 scopus 로고
    • Fast linear expected time algorithm for computing maxima and convex hulls
    • Bentley, J.L., Clarkson, K.L., and Levine, D.B. (1993). Fast linear expected time algorithm for computing maxima and convex hulls. Algorithmica, v. 9, pp. 168-183.
    • (1993) Algorithmica , vol.9 , pp. 168-183
    • Bentley, J.L.1    Clarkson, K.L.2    Levine, D.B.3
  • 6
    • 0026966067 scopus 로고
    • Fast geometric approximation techniques and geometric embedding problems
    • Bern, M.W., Karloff, H.L., and Schieber, B. (1992). Fast geometric approximation techniques and geometric embedding problems. Theoretical Comput. Sci., v. 106, pp. 265-281.
    • (1992) Theoretical Comput. Sci. , vol.106 , pp. 265-281
    • Bern, M.W.1    Karloff, H.L.2    Schieber, B.3
  • 8
    • 0023564490 scopus 로고
    • ART2: Self-organization of stable category recognition codes for analog input pattern
    • San Diego, CA, II
    • Carpenter, G.A., and Grossberg, S. (1987). ART2: Self-organization of stable category recognition codes for analog input pattern. Proc. IEEE Int. Conf. Neural Networks, San Diego, CA, II, pp. 727-736.
    • (1987) Proc. IEEE Int. Conf. Neural Networks , pp. 727-736
    • Carpenter, G.A.1    Grossberg, S.2
  • 9
    • 0014705383 scopus 로고
    • An algorithm for convex polytopes
    • Chank, D.R., and Kapur, S.S. (1970). An algorithm for convex polytopes. J. ACM, v. 17, pp. 78-86.
    • (1970) J. ACM , vol.17 , pp. 78-86
    • Chank, D.R.1    Kapur, S.S.2
  • 10
    • 0028464807 scopus 로고
    • Self-creating and organizing neural networks
    • Choi, D., and Park, S. (1994). Self-creating and organizing neural networks. IEEE Trans. on Neural Networks, v. 5, pp. 561-575.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , pp. 561-575
    • Choi, D.1    Park, S.2
  • 11
    • 0343773176 scopus 로고    scopus 로고
    • A dynamic neural net to compute convex-hull
    • Datta, A., and Parui, S.K. (1996). A dynamic neural net to compute convex-hull. Neurocomputing, v. 10, pp.375-384.
    • (1996) Neurocomputing , vol.10 , pp. 375-384
    • Datta, A.1    Parui, S.K.2
  • 12
    • 0034063509 scopus 로고    scopus 로고
    • A connectionist model for convex-hull of a planar set
    • Datta, A., Pal, S., and Pal, N.R. (2000). A connectionist model for convex-hull of a planar set. Neural Networks, v. 13, pp.377-384.
    • (2000) Neural Networks , vol.13 , pp. 377-384
    • Datta, A.1    Pal, S.2    Pal, N.R.3
  • 15
    • 0006734370 scopus 로고
    • Theoretical foundations of computer graphics and CAD
    • Berlin: Springer-Verlag
    • Earnshaw, R.A. (1988). Theoretical foundations of computer graphics and CAD. NATO ASI., v. F40, Berlin: Springer-Verlag.
    • (1988) NATO ASI. , vol.F40
    • Earnshaw, R.A.1
  • 16
    • 84976730298 scopus 로고
    • A new convex hull algorithm for planar sets
    • Eddy, W.F. (1977). A new convex hull algorithm for planar sets. ACM Trans. Math. Software, v. 3, pp. 398-403.
    • (1977) ACM Trans. Math. Software , vol.3 , pp. 398-403
    • Eddy, W.F.1
  • 19
    • 49649136358 scopus 로고
    • An efficient algorithm for determining the convex hull of a finite planar set
    • Graham, R.L. (1972). An efficient algorithm for determining the convex hull of a finite planar set. Inform. Processing Lett., v. 1, pp. 132-133.
    • (1972) Inform. Processing Lett. , vol.1 , pp. 132-133
    • Graham, R.L.1
  • 20
    • 0027606684 scopus 로고
    • Constructing Strongly Convex approximate hulls with inaccurate primitives
    • Guibas, L., Salesin, D., and Stolfi, J. (1993). Constructing Strongly Convex approximate hulls with inaccurate primitives. Algorithmica, v. 9, pp. 534-560.
    • (1993) Algorithmica , vol.9 , pp. 534-560
    • Guibas, L.1    Salesin, D.2    Stolfi, J.3
  • 21
    • 0004273452 scopus 로고
    • Addison-Wesley Publishing Company
    • Hadley, G. (1962). Linear Programming, Addison-Wesley Publishing Company.
    • (1962) Linear Programming
    • Hadley, G.1
  • 22
    • 0026913154 scopus 로고
    • Cross motion planning-A survey
    • Hwang, Y.K., and Ahuja, N. (1993). Cross motion planning-A survey. ACM Comput. Survey, v. 24, pp. 219-291.
    • (1993) ACM Comput. Survey , vol.24 , pp. 219-291
    • Hwang, Y.K.1    Ahuja, N.2
  • 23
    • 0015599132 scopus 로고
    • On the identification of the convex hull of a finite set of points in the plane
    • Jarvis, R.A. (1973). On the identification of the convex hull of a finite set of points in the plane, Inform. Processing Lett., v. 2, pp. 18-21.
    • (1973) Inform. Processing Lett. , vol.2 , pp. 18-21
    • Jarvis, R.A.1
  • 25
    • 0031143271 scopus 로고    scopus 로고
    • Neural networks for convex hull computation
    • Leung, Y., Zhang, J.S., and Xu, Z.B. (1997). Neural networks for convex hull computation. IEEE Trans. Neural Networks, v. 8, pp. 601-611.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 601-611
    • Leung, Y.1    Zhang, J.S.2    Xu, Z.B.3
  • 26
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, pp.4-22.
    • (1987) IEEE ASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 27
    • 0003778945 scopus 로고
    • A comparison of Hamming and Hopfield neural nets for pattern classification
    • Tech. Rep. 769, Lincoln Lab., MIT
    • Lippmann, R.P., Bold, B., and Malpass, M. L. (1987). A comparison of Hamming and Hopfield neural nets for pattern classification. Tech. Rep. 769, Lincoln Lab., MIT.
    • (1987)
    • Lippmann, R.P.1    Bold, B.2    Malpass, M.L.3
  • 30
    • 0035506238 scopus 로고    scopus 로고
    • A Multi-layer self-organizing model for convex-hull computation
    • Pal, S., Datta, A., and Pal, N.R. (2001). A Multi-layer self-organizing model for convex-hull computation. IEEE Tr. Neural Networks, v. 12, pp. 1341-1347.
    • (2001) IEEE Tr. Neural Networks , vol.12 , pp. 1341-1347
    • Pal, S.1    Datta, A.2    Pal, N.R.3
  • 31
    • 0029308755 scopus 로고
    • A biologically-inspired improved MAXNET
    • Pecht, O.Y., and Gur, M. (1995). A biologically-inspired improved MAXNET. IEEE Trans. Neural Networks, v. 6, pp. 757-759.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 757-759
    • Pecht, O.Y.1    Gur, M.2
  • 32
    • 0017453547 scopus 로고
    • Convex hulls of finite sets of points in two and three dimensions
    • Preparata, F.P., and Hong, S.J. (1977). Convex hulls of finite sets of points in two and three dimensions. Comm. ACM., v. 20, pp. 87-93.
    • (1977) Comm. ACM. , vol.20 , pp. 87-93
    • Preparata, F.P.1    Hong, S.J.2
  • 37
    • 0006663072 scopus 로고    scopus 로고
    • Wavelet neuron filter with the local statistics oriented to the pre-processor for the image signals
    • (California, USA)
    • Suetake, N., Yamauchi, N., and Yamakawa, T. (1999). Wavelet neuron filter with the local statistics oriented to the pre-processor for the image signals. Proc. 2nd Int. Conf. on Information fusion, (California, USA), v. I, pp. 626-633.
    • (1999) Proc. 2nd Int. Conf. on Information Fusion , vol.1 , pp. 626-633
    • Suetake, N.1    Yamauchi, N.2    Yamakawa, T.3
  • 38
    • 0000984277 scopus 로고
    • On a magnitude preserving iterative MAXnet algorithm
    • Suter, B.W., and Kabrisky, M. (1992). On a magnitude preserving iterative MAXnet algorithm. Neural Computation, v. 4, pp. 224-233.
    • (1992) Neural Computation , vol.4 , pp. 224-233
    • Suter, B.W.1    Kabrisky, M.2
  • 40
    • 0029291227 scopus 로고
    • On a constant-time, low-complexity winner-take-all neural network
    • Tseng, Y.-H., and Wu, J.-L. (1995). On a constant-time, low-complexity winner-take-all neural network. IEEE Trans. Computers, v. 44, pp. 601-604.
    • (1995) IEEE Trans. Computers , vol.44 , pp. 601-604
    • Tseng, Y.-H.1    Wu, J.-L.2
  • 42
    • 0024767810 scopus 로고
    • A convex hull algorithm for neural networks
    • Wennmyr, E. (1989). A convex hull algorithm for neural networks. IEEE Trans. Circuits Syst., v. 36, pp. 1478-1484.
    • (1989) IEEE Trans. Circuits Syst. , vol.36
    • Wennmyr, E.1
  • 43
    • 0024776637 scopus 로고
    • Minimum distance automata in parallel networks for optimum classification
    • Winters, J.H., and Rose, C. (1989).Minimum distance automata in parallel networks for optimum classification. Neural Networks, v. 2, pp. 127-132.
    • (1989) Neural Networks , vol.2 , pp. 127-132
    • Winters, J.H.1    Rose, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.