메뉴 건너뛰기




Volumn 21, Issue 1, 2004, Pages 7-17

On operations and linear extensions of well partially ordered sets

Author keywords

Antichain; Linear extension; Ordered set; Partially well order; Rank; Tree; Well founded order; Width

Indexed keywords


EID: 12944268304     PISSN: 01678094     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11083-004-2738-0     Document Type: Article
Times cited : (7)

References (12)
  • 1
    • 12944272993 scopus 로고
    • On well-quasi-ordering finite sequences
    • Bollerhoff, U.: On well-quasi-ordering finite sequences, Europ. J. Combin. 10 (1989), 227-230.
    • (1989) Europ. J. Combin. , vol.10 , pp. 227-230
    • Bollerhoff, U.1
  • 2
    • 0042729709 scopus 로고
    • Sets having divisor property, solution to problem 4358
    • Erdos, P. and Rado, R.: Sets having divisor property, solution to problem 4358, Amer. Math. Monthly 59 (1952), 255-257.
    • (1952) Amer. Math. Monthly , vol.59 , pp. 255-257
    • Erdos, P.1    Rado, R.2
  • 3
    • 84963086911 scopus 로고
    • Ordering by divisibility in abstract algebras
    • Higman, G.: Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326-336.
    • (1952) Proc. London Math. Soc. (3) , vol.2 , pp. 326-336
    • Higman, G.1
  • 4
    • 0000104015 scopus 로고
    • Well-partial orderings and hierachies
    • de Jongh, D. H. J. and Parigh, R.: Well-partial orderings and hierachies, Indigationes Math. 39 (1979), 195-207.
    • (1979) Indigationes Math. , vol.39 , pp. 195-207
    • Jongh, D.H.J.1    Parigh, R.2
  • 5
    • 84916498981 scopus 로고
    • Well-quasi-ordering, the tree theorem, and Vasonyi's conjecture
    • Kruskal, J. B.: Well-quasi-ordering, the tree theorem, and Vasonyi's conjecture, Trans. Amer. Math. Soc. 95 (1960), 210-225.
    • (1960) Trans. Amer. Math. Soc. , vol.95 , pp. 210-225
    • Kruskal, J.B.1
  • 6
    • 0000429352 scopus 로고
    • The theory of well-quasi-ordering: A frequently discovered concept
    • Kruskal, J. B.: The theory of well-quasi-ordering: a frequently discovered concept, J. Combin. Theory (A) (1972), 297-305.
    • (1972) J. Combin. Theory (A) , pp. 297-305
    • Kruskal, J.B.1
  • 7
    • 84959739345 scopus 로고
    • On chains and antichains in well founded partially ordered sets
    • Milner, E. C. and Sauer, N.: On chains and antichains in well founded partially ordered sets, J. London Math. Soc. (2) 24 (1981), 15-33.
    • (1981) J. London Math. Soc. (2) , vol.24 , pp. 15-33
    • Milner, E.C.1    Sauer, N.2
  • 8
    • 0001043061 scopus 로고
    • On ordered division rings
    • Neumann, B. H.: On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-346.
    • (1949) Trans. Amer. Math. Soc. , vol.66 , pp. 202-346
    • Neumann, B.H.1
  • 9
    • 0007292096 scopus 로고    scopus 로고
    • Which countable ordered sets have a dense linear extension?
    • Rutkowski, A.: Which countable ordered sets have a dense linear extension? Math. Slovaca 46(5) (1996), 445-455.
    • (1996) Math. Slovaca , vol.46 , Issue.5 , pp. 445-455
    • Rutkowski, A.1
  • 10
    • 12944260074 scopus 로고
    • The relation between the height of a well-founded partial ordering and the order types of its chains and antichains
    • Schmidt, D.: The relation between the height of a well-founded partial ordering and the order types of its chains and antichains, J. Combin. Theory Ser. B 31 (1981), 183-189.
    • (1981) J. Combin. Theory Ser. B , vol.31 , pp. 183-189
    • Schmidt, D.1
  • 11
    • 0000827984 scopus 로고
    • Complexity bounds for some finite forms in Kruskal's theorem
    • Weiermann, A.: Complexity bounds for some finite forms in Kruskal's theorem, J. Symbolic Comput. 18 (1994), 463-488.
    • (1994) J. Symbolic Comput. , vol.18 , pp. 463-488
    • Weiermann, A.1
  • 12
    • 3042848246 scopus 로고
    • Partially well ordered sets and partial ordinals
    • Wolk, E. S.: Partially well ordered sets and partial ordinals, Fund. Math. 60 (1967), 175-186.
    • (1967) Fund. Math. , vol.60 , pp. 175-186
    • Wolk, E.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.