-
4
-
-
0029457584
-
A new method for initializing reference vectors in LVQ
-
IEEE, ed.. IEEE Service Center
-
N. Kitajima, "A New Method for Initializing Reference Vectors in LVQ," in Proc. Int'l Conf. on Neural Network, IEEE, ed., vol. 5. IEEE Service Center, 1995, pp. 2775-2779.
-
(1995)
Proc. Int'l Conf. on Neural Network
, vol.5
, pp. 2775-2779
-
-
Kitajima, N.1
-
5
-
-
12744266174
-
A method for analyzing decision regions in learning vector quantization algorithms
-
I. Aleksander and J. Taylor, eds.. Amsterdam: Elsevier
-
J.T. Laaksonen, "A Method for Analyzing Decision Regions in Learning Vector Quantization Algorithms," in Artificial Neural Networks. 2 - Proc. Int'l Corf on Artificial Neural Networks, I. Aleksander and J. Taylor, eds., vol. 2. Amsterdam: Elsevier, 1992, pp. 1181-1184.
-
(1992)
Artificial Neural Networks. 2 - Proc. Int'l Corf on Artificial Neural Networks
, vol.2
, pp. 1181-1184
-
-
Laaksonen, J.T.1
-
8
-
-
0003684449
-
-
New York: Springer
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning : Data Mining, Inference, and Prediction. New York: Springer, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
9
-
-
0024123145
-
Adding a Conscience to Competitive Learning
-
IEEE, ed., Piscataway, NJ: IEEE Service Center
-
D. DeSieno, "Adding a Conscience to Competitive Learning," in Proc. IEEE Int'l Conf. on Neural Networks, IEEE, ed., vol. I. Piscataway, NJ: IEEE Service Center, 1988, pp. 117-124.
-
(1988)
Proc. IEEE Int'l Conf. on Neural Networks
, vol.1
, pp. 117-124
-
-
DeSieno, D.1
-
10
-
-
0003641867
-
-
NeuralWare, Inc., Technical Publications Group, Pittsburgh
-
NeuralWare, Inc., Neural Computing : A Technology Handbook for Professional II/Plus and NeuralWorks Explorer, NeuralWare, Inc., Technical Publications Group, Pittsburgh, 1993.
-
(1993)
Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks Explorer
-
-
-
11
-
-
0027634778
-
Generalized clustering networks and Kohonen's self-organizing scheme
-
IEEE
-
N.R. Pal, I.C. Bedzek, and E.C.-K. Taso, "Generalized Clustering Networks and Kohonen's Self-Organizing Scheme," in IEEE Irons. Neural Networks, vol. 3, no. 4. IEEE, 1993, pp. 546-557.
-
(1993)
IEEE Irons. Neural Networks
, vol.3
, Issue.4
, pp. 546-557
-
-
Pal, N.R.1
Bedzek, I.C.2
Taso, E.C.-K.3
-
12
-
-
84979984712
-
Linear vector classification: An improvement on LVQ algorithms to create classes of patterns
-
J. Mira, J. Cabestany, and A. Prieto, eda. Berlin: Springer
-
M. Verleysen, P. Thissen, and J.-D. Legat, "Linear Vector Classification: An Improvement on LVQ Algorithms to Create Classes of Patterns," in New Trends in Neural Computation - Proc. Int'l Workshop ANN, J. Mira, J. Cabestany, and A. Prieto, eda. Berlin: Springer, 1993, pp. 340-345.
-
(1993)
New Trends in Neural Computation - Proc. Int'l Workshop ANN
, pp. 340-345
-
-
Verleysen, M.1
Thissen, P.2
Legat, J.-D.3
-
13
-
-
0028757281
-
Distinction sensitive learning vector quantisation - A new noise-insensitive classification method
-
IEEE, ed.. Piscataway, NJ: IEEE Service Center
-
M. Pregenzer, D. Flotringet, and G. Pfurtscheller, "Distinction Sensitive Learning Vector Quantisation - A New Noise-Insensitive Classification Method," in Proc. IEEE Int'l Conf. on Neural Networks (Orlando, FL), IEEE, ed., vol. V. Piscataway, NJ: IEEE Service Center, 1994, pp. 2890-2894.
-
(1994)
Proc. IEEE Int'l Conf. on Neural Networks (Orlando, FL)
, vol.5
, pp. 2890-2894
-
-
Pregenzer, M.1
Flotringet, D.2
Pfurtscheller, G.3
-
15
-
-
0029462473
-
LVQ with a weighted objective function
-
IEEE, ed.. IEEE Service Center
-
S.-J. You and C.-H. Choi, "LVQ with a Weighted Objective Function," in Proc. IEEE Int'l Conf. Neural Networks, IEEE, ed., vol. 5. IEEE Service Center, 1995, pp. 2763-2768.
-
(1995)
Proc. IEEE Int'l Conf. Neural Networks
, vol.5
, pp. 2763-2768
-
-
You, S.-J.1
Choi, C.-H.2
-
16
-
-
0031214181
-
Learning Vector Quantization with Training Count (LVQTC)
-
R. Odorico, "Learning Vector Quantization with Training Count (LVQTC)," Neural Networks, vol. 10, no. 6, pp. 1083-1088, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.6
, pp. 1083-1088
-
-
Odorico, R.1
-
18
-
-
84902138900
-
Learning vector quantization for multimodal data
-
Heidelberg: Springer
-
B. Hammer, M. Stricken, and T. Villmann, "Learning Vector Quantization for Multimodal Data," in Artificial Neural Networks Proc. Int'l Conf. Heidelberg: Springer, 2002, pp. 370-376.
-
(2002)
Artificial Neural Networks Proc. Int'l Conf.
, pp. 370-376
-
-
Hammer, B.1
Stricken, M.2
Villmann, T.3
-
19
-
-
0038159964
-
Soft learning vector quantization
-
S. Seo and K. Obermayer, "Soft Learning Vector Quantization," Neural Computation, vol. 15, pp. 1589-1604, 2003.
-
(2003)
Neural Computation
, vol.15
, pp. 1589-1604
-
-
Seo, S.1
Obermayer, K.2
-
20
-
-
0038667901
-
Premature clustering phenomenon and new training algorithms for LVQ
-
M.T. Vakil-Baghmisheh and N. Pavesic, "Premature Clustering Phenomenon and new Training Algorithms for LVQ," Pattern Recognition, vol. 36, no. 8, pp. 1901-1912, 2003.
-
(2003)
Pattern Recognition
, vol.36
, Issue.8
, pp. 1901-1912
-
-
Vakil-Baghmisheh, M.T.1
Pavesic, N.2
-
26
-
-
0005234764
-
G-LVQ, a combination of genetic algorithms and LVQ
-
D.W. Pearson, N.C. Steele, and R.F. Albrecht, eds. Wien: Springer
-
J. Merelo and A. Prieto, "G-LVQ, a Combination of Genetic Algorithms and LVQ," in Artificial Neural Nets and Genetic Algorithms Proc. Int'l Conf., D.W. Pearson, N.C. Steele, and R.F. Albrecht, eds. Wien: Springer, 1995, pp. 92-95.
-
(1995)
Artificial Neural Nets and Genetic Algorithms Proc. Int'l Conf.
, pp. 92-95
-
-
Merelo, J.1
Prieto, A.2
-
27
-
-
0038958837
-
Genetische Modellierung von Künstlichen Neuronalen Netzen: Erfahrungen beim Einsatz zur Kreditwürdig-keitsprüfung
-
U. Derigs and G. Schirp, "Genetische Modellierung von Künstlichen Neuronalen Netzen : Erfahrungen beim Einsatz zur Kreditwürdig-keitsprüfung," OR Spektrum, no. 19, pp. 285-293, 1997.
-
(1997)
OR Spektrum
, Issue.19
, pp. 285-293
-
-
Derigs, U.1
Schirp, G.2
|