-
3
-
-
0034326134
-
Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms
-
H.J. Cao, and Z.R. Liu Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms Chaos, Solitons & Fractals 11 2000 2293 2304
-
(2000)
Chaos, Solitons & Fractals
, Issue.11
, pp. 2293-2304
-
-
Cao, H.J.1
Liu, Z.R.2
-
4
-
-
0036885489
-
Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term
-
M. Tang, and X. Hong Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term Chaos, Solitons & Fractals 14 2002 1361 1369
-
(2002)
Chaos, Solitons & Fractals
, vol.14
, pp. 1361-1369
-
-
Tang, M.1
Hong, X.2
-
6
-
-
0001211762
-
Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system
-
J. Li, and Z. Liu Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system Publ. Math. 35 1991 487 506
-
(1991)
Publ. Math.
, vol.35
, pp. 487-506
-
-
Li, J.1
Liu, Z.2
-
9
-
-
0004359469
-
On the connection between two parts of Hilbert's 16th problem and equivariant bifurcation problem
-
J. Li, and Z. Liu On the connection between two parts of Hilbert's 16th problem and equivariant bifurcation problem Ann. Differ. Equat. 14 1998 224 235
-
(1998)
Ann. Differ. Equat.
, vol.14
, pp. 224-235
-
-
Li, J.1
Liu, Z.2
-
10
-
-
0000495631
-
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type
-
N.N. Bautin On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type Mat. Sbornik (NS) 30 72 1952 181 196
-
(1952)
Mat. Sbornik (NS)
, vol.30
, Issue.72
, pp. 181-196
-
-
Bautin, N.N.1
-
11
-
-
0001012446
-
A concrete example of the existence of four limit cycles for planar quadratic system
-
S.A. Shi A concrete example of the existence of four limit cycles for planar quadratic system Sci. Sin. Ser. A 23 1980 153 158
-
(1980)
Sci. Sin. Ser. A
, vol.23
, pp. 153-158
-
-
Shi, S.A.1
-
13
-
-
0031172970
-
An explicit expression of the first Liapunov and period constants with applications
-
G. Armengonl, G. Antoni, and M. Victour An explicit expression of the first Liapunov and period constants with applications J. Math. Anal. Appl. 211 1997 190 212
-
(1997)
J. Math. Anal. Appl.
, vol.211
, pp. 190-212
-
-
Armengonl, G.1
Antoni, G.2
Victour, M.3
-
15
-
-
0033165088
-
Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane
-
M. Han, and Z. Zhang Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane J. Differ. Equat. 155 1999 245 261
-
(1999)
J. Differ. Equat.
, vol.155
, pp. 245-261
-
-
Han, M.1
Zhang, Z.2
-
16
-
-
0009492596
-
On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems
-
Y. He, and C. Li On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems Differ. Equat. Dynam. Syst. 5 1997 303 316
-
(1997)
Differ. Equat. Dynam. Syst.
, vol.5
, pp. 303-316
-
-
He, Y.1
Li, C.2
-
17
-
-
0002714708
-
Saddle quantities and applications
-
J. Pierre, and R. Christiane Saddle quantities and applications J. Differ. Equat. 78 1989 374 399
-
(1989)
J. Differ. Equat.
, vol.78
, pp. 374-399
-
-
Pierre, J.1
Christiane, R.2
-
18
-
-
0013455971
-
On the number of limit cycles bifurcated from a homoclinic or heteroclinic loop
-
H. Maoan On the number of limit cycles bifurcated from a homoclinic or heteroclinic loop Sci. China Ser. A 2 1993 113 122 [in Chinese]
-
(1993)
Sci. China Ser. A
, vol.2
, pp. 113-122
-
-
Maoan, H.1
-
19
-
-
22044453977
-
Bifurcations of limit cycles from a heteroclinic cycles of Hamiltonian systems
-
M. Han Bifurcations of limit cycles from a heteroclinic cycles of Hamiltonian systems Chin. Ann. Math. 19B 1998 189 196
-
(1998)
Chin. Ann. Math.
, vol.19
, pp. 189-196
-
-
Han, M.1
-
20
-
-
0037408724
-
On the stability of double homoclinic and heteroclinic cycles
-
M. Han, S. Hu, and X. Liu On the stability of double homoclinic and heteroclinic cycles Nonlinear Anal. 53 2003 701 713
-
(2003)
Nonlinear Anal.
, vol.53
, pp. 701-713
-
-
Han, M.1
Hu, S.2
Liu, X.3
|