-
1
-
-
0001796185
-
Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists
-
D.J. Aldous Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists Bernoulli 5 1999 3 48
-
(1999)
Bernoulli
, vol.5
, pp. 3-48
-
-
Aldous, D.J.1
-
2
-
-
0010708291
-
Ordinary Differential Equations. An Introduction to Nonlinear Analysis
-
Walter de Gruyter Berlin
-
H. Amann Ordinary Differential Equations. An Introduction to Nonlinear Analysis Translated from the German by Gerhard Metzen de Gruyter Studies in Mathematics vol. 13 1990 Walter de Gruyter Berlin
-
(1990)
De Gruyter Studies in Mathematics
, vol.13
-
-
Amann, H.1
-
3
-
-
2442487952
-
Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss
-
L. Arlotti, and J. Banasiak Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss J. Math. Anal. Appl. 293 2 2004 693 720
-
(2004)
J. Math. Anal. Appl.
, vol.293
, Issue.2
, pp. 693-720
-
-
Arlotti, L.1
Banasiak, J.2
-
6
-
-
0242635870
-
On small masses in self-similar fragmentations
-
J. Bertoin On small masses in self-similar fragmentations Stochastic Process. Appl. 109 1 2004 13 22
-
(2004)
Stochastic Process. Appl.
, vol.109
, Issue.1
, pp. 13-22
-
-
Bertoin, J.1
-
7
-
-
1442359825
-
The asymptotic behavior of fragmentation processes
-
J. Bertoin The asymptotic behavior of fragmentation processes J. Eur. Math. Soc. (JEMS) 5 4 2003 395 416
-
(2003)
J. Eur. Math. Soc. (JEMS)
, vol.5
, Issue.4
, pp. 395-416
-
-
Bertoin, J.1
-
8
-
-
0036330936
-
Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations
-
J. Bertoin Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations Ann. Appl. Probab. 12 2 2002 547 564
-
(2002)
Ann. Appl. Probab.
, vol.12
, Issue.2
, pp. 547-564
-
-
Bertoin, J.1
-
10
-
-
0035621332
-
Homogeneous fragmentation processes
-
J. Bertoin Homogeneous fragmentation processes Probab. Theory Related Fields 121 3 2001 301 318
-
(2001)
Probab. Theory Related Fields
, vol.121
, Issue.3
, pp. 301-318
-
-
Bertoin, J.1
-
11
-
-
0003255150
-
An Introduction to Semilinear Evolution Equations
-
The Clarendon Press, Oxford University Press New York
-
T. Cazenave, and A. Haraux An Introduction to Semilinear Evolution Equations Oxford Lecture Series in Mathematics and its Applications vol. 13 1998 The Clarendon Press, Oxford University Press New York
-
(1998)
Oxford Lecture Series in Mathematics and Its Applications
, vol.13
-
-
Cazenave, T.1
Haraux, A.2
-
12
-
-
21444436970
-
On the dynamic scaling behavior of solutions to the discrete Smoluchowski equations
-
F.P. da Costa On the dynamic scaling behavior of solutions to the discrete Smoluchowski equations Proc. Edinburgh Math. Soc. 39 2 1996 547 559
-
(1996)
Proc. Edinburgh Math. Soc.
, vol.39
, Issue.2
, pp. 547-559
-
-
Da Costa, F.P.1
-
13
-
-
0012548294
-
Smoluchowski's coagulation equation: Probabilistic interpretation of solutions for constant, additive and multiplicative kernels
-
M. Deaconu, and E. Tanré Smoluchowski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 4 2000 549 579
-
(2000)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.29
, Issue.4
, pp. 549-579
-
-
Deaconu, M.1
Tanré, E.2
-
14
-
-
26344479092
-
Scale-invariant regimes in one-dimensional models of growing and coalescing droplets
-
B. Derrida, C. Godréche, and I. Yekuitieli Scale-invariant regimes in one-dimensional models of growing and coalescing droplets Phys. Rev. A 44 1991 6241 6251
-
(1991)
Phys. Rev. A
, vol.44
, pp. 6241-6251
-
-
Derrida, B.1
Godréche, C.2
Yekuitieli, I.3
-
15
-
-
0002306354
-
Ordinary differential equations, transport theory and Sobolev spaces
-
R.J. DiPerna, and P.-L. Lions Ordinary differential equations, transport theory and Sobolev spaces Invent. Math. 98 1989 707 741
-
(1989)
Invent. Math.
, vol.98
, pp. 707-741
-
-
Diperna, R.J.1
Lions, P.-L.2
-
16
-
-
0011241542
-
Cluster size distribution in irreversible aggregation at large times
-
P.G.J. van Dongen, and M.H. Ernst Cluster size distribution in irreversible aggregation at large times J. Phys. A 18 1985 2779 2793
-
(1985)
J. Phys. A
, vol.18
, pp. 2779-2793
-
-
Van Dongen, P.G.J.1
Ernst, M.H.2
-
17
-
-
33747627898
-
Scaling solutions of Smoluchowski's coagulation equation
-
P.G.J. van Dongen, and M.H. Ernst Scaling solutions of Smoluchowski's coagulation equation J. Statist. Phys. 50 1988 295 329
-
(1988)
J. Statist. Phys.
, vol.50
, pp. 295-329
-
-
Van Dongen, P.G.J.1
Ernst, M.H.2
-
19
-
-
0030191189
-
Trend to equilibrium for the coagulation-fragmentation equation
-
P.B. Dubovskiǐ, and I.W. Stewart Trend to equilibrium for the coagulation-fragmentation equation Math. Methods Appl. Sci. 19 1996 761 772
-
(1996)
Math. Methods Appl. Sci.
, vol.19
, pp. 761-772
-
-
Dubovskiǐ, P.B.1
Stewart, I.W.2
-
21
-
-
0035497815
-
Stochastic particle approximations for Smoluchowski's coagulation equation
-
A. Eibeck, and W. Wagner Stochastic particle approximations for Smoluchowski's coagulation equation Ann. Appl. Probab. 11 2001 1137 1165
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 1137-1165
-
-
Eibeck, A.1
Wagner, W.2
-
22
-
-
0344981529
-
Gelation and mass conservation in coagulation-fragmentation models
-
M. Escobedo, Ph. Laurençot, S. Mischler, and B. Perthame Gelation and mass conservation in coagulation-fragmentation models J. Differential Equations 195 1 2003 143 174
-
(2003)
J. Differential Equations
, vol.195
, Issue.1
, pp. 143-174
-
-
Escobedo, M.1
Laurençot, Ph.2
Mischler, S.3
Perthame, B.4
-
24
-
-
0000648149
-
Large time behavior of the solutions of a convection diffusion equation
-
M. Escobedo, and E. Zuazua Large time behavior of the solutions of a convection diffusion equation J. Funct. Anal. 100 1991 119 161
-
(1991)
J. Funct. Anal.
, vol.100
, pp. 119-161
-
-
Escobedo, M.1
Zuazua, E.2
-
25
-
-
0037256743
-
On small particles in coagulation-fragmentation equations
-
N. Fournier, and J.-S. Giet On small particles in coagulation-fragmentation equations J. Statist. Phys. 111 5-6 2003 1299 1329
-
(2003)
J. Statist. Phys.
, vol.111
, Issue.56
, pp. 1299-1329
-
-
Fournier, N.1
Giet, J.-S.2
-
28
-
-
2442489990
-
On the Boltzmann equation for diffusively excited granular media
-
I.M. Gamba, V. Panferov, and C. Villani On the Boltzmann equation for diffusively excited granular media Comm. Math. Phys. 246 3 2004 503 541
-
(2004)
Comm. Math. Phys.
, vol.246
, Issue.3
, pp. 503-541
-
-
Gamba, I.M.1
Panferov, V.2
Villani, C.3
-
29
-
-
0037524295
-
Loss of mass in deterministic and random fragmentations
-
B. Haas Loss of mass in deterministic and random fragmentations Stochastic Process. Appl. 106 2 2003 245 277
-
(2003)
Stochastic Process. Appl.
, vol.106
, Issue.2
, pp. 245-277
-
-
Haas, B.1
-
30
-
-
21344485189
-
Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel
-
M. Kreer, and O. Penrose Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel J. Statist. Phys. 75 1994 389 407
-
(1994)
J. Statist. Phys.
, vol.75
, pp. 389-407
-
-
Kreer, M.1
Penrose, O.2
-
31
-
-
25344476222
-
Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function
-
D.S. Krivitsky Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function J. Phys. A 28 1995 2025 2039
-
(1995)
J. Phys. A
, vol.28
, pp. 2025-2039
-
-
Krivitsky, D.S.1
-
33
-
-
0037131691
-
From the discrete to the continuous coagulation-fragmentation equations
-
Ph. Laurençot, and S. Mischler From the discrete to the continuous coagulation-fragmentation equations Proc. Roy. Soc. Edinburgh Sect. A 132 5 2002 1219 1248
-
(2002)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.132
, Issue.5
, pp. 1219-1248
-
-
Laurençot, Ph.1
Mischler, S.2
-
34
-
-
0036004822
-
The continuous coagulation-fragmentation equations with diffusion
-
Ph. Laurençot, and S. Mischler The continuous coagulation-fragmentation equations with diffusion Arch. Rational Mech. Anal. 162 2002 45 99
-
(2002)
Arch. Rational Mech. Anal.
, vol.162
, pp. 45-99
-
-
Laurençot, Ph.1
Mischler, S.2
-
35
-
-
0038794181
-
Convergence to equilibrium for the continuous coagulation-fragmentation equation
-
Ph. Laurençot, and S. Mischler Convergence to equilibrium for the continuous coagulation-fragmentation equation Bull. Sci. Math. 127 2003 179 190
-
(2003)
Bull. Sci. Math.
, vol.127
, pp. 179-190
-
-
Laurençot, Ph.1
Mischler, S.2
-
36
-
-
12744262625
-
On coalescence equations and related models
-
P. Degond L. Pareschi G. Russo Birkhäuser, Modelling and Computational Methods for Kinetic Equations
-
P. Laurençot, and S. Mischler On coalescence equations and related models P. Degond L. Pareschi G. Russo Modelling and Computational Methods for Kinetic Equations Series Modelling and Simulation in Science, Engineering and Technology (MSSET) 2004 Birkhäuser submitted for publication
-
(2004)
Series Modelling and Simulation in Science, Engineering and Technology (MSSET)
-
-
Laurençot, P.1
Mischler, S.2
-
37
-
-
0000207735
-
Existence and properties of post-gel solutions for the kinetic equations of coagulation
-
F. Leyvraz Existence and properties of post-gel solutions for the kinetic equations of coagulation J. Phys. A 16 1983 2861 2873
-
(1983)
J. Phys. A
, vol.16
, pp. 2861-2873
-
-
Leyvraz, F.1
-
38
-
-
0041511747
-
Scaling theory and exactly solved models in the kinetics of irreversible aggregation
-
F. Leyvraz Scaling theory and exactly solved models in the kinetics of irreversible aggregation Phys. Reports 383 2-3 2003 95 212
-
(2003)
Phys. Reports
, vol.383
, Issue.23
, pp. 95-212
-
-
Leyvraz, F.1
-
42
-
-
0038511113
-
Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions
-
S. Mischler, and M. Rodriguez Ricard Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions C. R. Acad. Sci. Paris Sér. I Math. 336 2003 407 412
-
(2003)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.336
, pp. 407-412
-
-
Mischler, S.1
Ricard, M.R.2
-
44
-
-
0030268411
-
Steady-state size distribution for self-similar collision cascade
-
H. Tanaka, S. Inaba, and K. Nakaza Steady-state size distribution for self-similar collision cascade Icarus 123 1996 450 455
-
(1996)
Icarus
, vol.123
, pp. 450-455
-
-
Tanaka, H.1
Inaba, S.2
Nakaza, K.3
|