메뉴 건너뛰기




Volumn 2, Issue 2, 2004, Pages 70-77

Making the most of it: Pathway reconstruction and integrative simulation using the data at hand

Author keywords

Bayesian inference; gene expression; model; pathway reconstruction; reverse engineering; systems biology

Indexed keywords

AUTOMATION; COMPUTER SIMULATION; DATA BASE; HIGH THROUGHPUT SCREENING; QUALITATIVE ANALYSIS; REVIEW;

EID: 12344318183     PISSN: 17418364     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1741-8364(04)02399-6     Document Type: Review
Times cited : (9)

References (71)
  • 2
    • 0036499997 scopus 로고    scopus 로고
    • Modeling the heart-from genes to cells to the whole organ
    • Noble D. Modeling the heart-from genes to cells to the whole organ. Science. 295:2002;1678-1682
    • (2002) Science , vol.295 , pp. 1678-1682
    • Noble, D.1
  • 3
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • Ideker, T.E. et al. (2000) Discovery of regulatory interactions through perturbation: inference and experimental design, Pac. Symp. Biocomput., 305-316
    • (2000) Pac. Symp. Biocomput. , pp. 305-316
    • Ideker, T.E.1
  • 4
    • 0346245914 scopus 로고    scopus 로고
    • Modelling the controls of the eukaryotic cell cycle
    • Novak B., Tyson J.J. Modelling the controls of the eukaryotic cell cycle. Biochem. Soc. Trans. 31:2003;1526-1529
    • (2003) Biochem. Soc. Trans. , vol.31 , pp. 1526-1529
    • Novak, B.1    Tyson, J.J.2
  • 5
    • 0033031386 scopus 로고    scopus 로고
    • E-CELL: Software environment for whole-cell simulation
    • Tomita M., et al. E-CELL: software environment for whole-cell simulation. Bioinformatics. 15:1999;72-84
    • (1999) Bioinformatics , vol.15 , pp. 72-84
    • Tomita, M.1
  • 6
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network
    • Famili I., et al. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. U. S. A. 100:2003;13134-13139
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 13134-13139
    • Famili, I.1
  • 7
    • 0344328817 scopus 로고    scopus 로고
    • An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)
    • Reed J.L., et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4:2003;R54
    • (2003) Genome Biol. , vol.4 , pp. 54
    • Reed, J.L.1
  • 8
    • 0042662951 scopus 로고    scopus 로고
    • A method for classifying metabolites in topological pathway analyses based on minimization of pathway number
    • Dandekar T., et al. A method for classifying metabolites in topological pathway analyses based on minimization of pathway number. Biosystems. 70:2003;255-270
    • (2003) Biosystems , vol.70 , pp. 255-270
    • Dandekar, T.1
  • 9
    • 0345602990 scopus 로고    scopus 로고
    • Topological analysis of metabolic networks based on Petri net theory
    • Zevedei-Oancea I., Schuster S. Topological analysis of metabolic networks based on Petri net theory. In Silico Biol. 3:2003;323-345
    • (2003) In Silico Biol. , vol.3 , pp. 323-345
    • Zevedei-Oancea, I.1    Schuster, S.2
  • 10
    • 0036441029 scopus 로고    scopus 로고
    • Prediction of temporal gene expression. Metabolic optimization by re-distribution of enzyme activities
    • Klipp E., et al. Prediction of temporal gene expression. Metabolic optimization by re-distribution of enzyme activities. Eur. J. Biochem. 269:2002;5406-5413
    • (2002) Eur. J. Biochem. , vol.269 , pp. 5406-5413
    • Klipp, E.1
  • 11
    • 0033977576 scopus 로고    scopus 로고
    • WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction
    • Overbeek R., et al. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28:2000;123-125
    • (2000) Nucleic Acids Res. , vol.28 , pp. 123-125
    • Overbeek, R.1
  • 12
    • 0345863935 scopus 로고    scopus 로고
    • The KEGG resource for deciphering the genome
    • Kanehisa M., et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32:2004;D277-D280
    • (2004) Nucleic Acids Res. , vol.32
    • Kanehisa, M.1
  • 13
    • 0035860545 scopus 로고    scopus 로고
    • Pathway databases: A case study in computational symbolic theories
    • Karp P.D. Pathway databases: a case study in computational symbolic theories. Science. 293:2001;2040-2044
    • (2001) Science , vol.293 , pp. 2040-2044
    • Karp, P.D.1
  • 14
    • 0346494819 scopus 로고    scopus 로고
    • MetaCyc: A multiorganism database of metabolic pathways and enzymes
    • Krieger C.J., et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 32:2004;D438-D442
    • (2004) Nucleic Acids Res. , vol.32
    • Krieger, C.J.1
  • 15
    • 12344296271 scopus 로고    scopus 로고
    • Designing databases to store biological information
    • Nelson M.R., et al. Designing databases to store biological information. Biosilico. 1:2003;134-142
    • (2003) Biosilico , vol.1 , pp. 134-142
    • Nelson, M.R.1
  • 16
    • 0038208179 scopus 로고    scopus 로고
    • What database management system(s) should be employed in bioinformatics applications?
    • Karp P.D. What database management system(s) should be employed in bioinformatics applications? OMICS. 7:2003;35-36
    • (2003) OMICS , vol.7 , pp. 35-36
    • Karp, P.D.1
  • 17
    • 0036772442 scopus 로고    scopus 로고
    • Physiological determinants of contractile force generation and calcium handling in mouse myocardium
    • Stull L.B., et al. Physiological determinants of contractile force generation and calcium handling in mouse myocardium. J. Mol. Cell. Cardiol. 34:2002;1367-1376
    • (2002) J. Mol. Cell. Cardiol. , vol.34 , pp. 1367-1376
    • Stull, L.B.1
  • 18
    • 0032498894 scopus 로고    scopus 로고
    • Murine cardiac function: A cautionary tail
    • Kass D.A., et al. Murine cardiac function: a cautionary tail. Circ. Res. 82:1998;519-522
    • (1998) Circ. Res. , vol.82 , pp. 519-522
    • Kass, D.A.1
  • 19
    • 0037123990 scopus 로고    scopus 로고
    • Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function
    • Schram G., et al. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res. 90:2002;939-950
    • (2002) Circ. Res. , vol.90 , pp. 939-950
    • Schram, G.1
  • 20
    • 0035200488 scopus 로고    scopus 로고
    • A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes
    • Pandit S.V., et al. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81:2001;3029-3051
    • (2001) Biophys. J. , vol.81 , pp. 3029-3051
    • Pandit, S.V.1
  • 21
    • 0033583266 scopus 로고    scopus 로고
    • Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: Model studies
    • Winslow R.L., et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ. Res. 84:1999;571-586
    • (1999) Circ. Res. , vol.84 , pp. 571-586
    • Winslow, R.L.1
  • 22
    • 0036084519 scopus 로고    scopus 로고
    • Time-dependent transients in an ionically based mathematical model of the canine atrial action potential
    • Kneller J., et al. Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am. J. Physiol. Heart Circ. Physiol. 282:2002;H1437-H1451
    • (2002) Am. J. Physiol. Heart Circ. Physiol. , vol.282
    • Kneller, J.1
  • 23
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya O.G., et al. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. U. S. A. 100:2003;8348-8353
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1
  • 24
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho R.J., et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2:1998;65-73
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 25
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P.T., et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9:1998;3273-3297
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 26
    • 0034730124 scopus 로고    scopus 로고
    • Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations
    • Lee M.L., et al. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. U. S. A. 97:2000;9834-9839
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 9834-9839
    • Lee, M.L.1
  • 27
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu Y., et al. Quantitative noise analysis for gene expression microarray experiments. Proc. Natl. Acad. Sci. U. S. A. 99:2002;14031-14036
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 14031-14036
    • Tu, Y.1
  • 28
    • 0035805255 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analyses of a systematically perturbed metabolic network
    • Ideker T., et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 292:2001;929-934
    • (2001) Science , vol.292 , pp. 929-934
    • Ideker, T.1
  • 29
    • 0036020655 scopus 로고    scopus 로고
    • Genetic network modeling
    • van Someren E.P., et al. Genetic network modeling. Pharmacogenomics. 3:2002;507-525
    • (2002) Pharmacogenomics , vol.3 , pp. 507-525
    • Van Someren, E.P.1
  • 30
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'Haeseleer, P. et al. (1999) Linear modeling of mRNA expression levels during CNS development and injury, Pac. Symp. Biocomput., 41-52
    • (1999) Pac. Symp. Biocomput. , pp. 41-52
    • D'Haeseleer, P.1
  • 31
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung M.K., et al. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U. S. A. 99:2002;6163-6168
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 6163-6168
    • Yeung, M.K.1
  • 32
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., et al. Inferring genetic networks and identifying compound mode of action via expression profiling. Science. 301:2003;102-105
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1
  • 33
    • 0035230209 scopus 로고    scopus 로고
    • Reverse engineering of metabolic pathways from observed data using genetic programming
    • Koza, J.R. et al. (2001) Reverse engineering of metabolic pathways from observed data using genetic programming, Pac. Symp. Biocomput., 434-445
    • (2001) Pac. Symp. Biocomput. , pp. 434-445
    • Koza, J.R.1
  • 35
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
    • Uetz P., et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 403:2000;623-627
    • (2000) Nature , vol.403 , pp. 623-627
    • Uetz, P.1
  • 36
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L., et al. A protein interaction map of Drosophila melanogaster. Science. 302:2003;1727-1736
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1
  • 37
    • 9144264169 scopus 로고    scopus 로고
    • A map of the interactome network of the metazoan C. elegans
    • Li, S. et al. (2004) A map of the interactome network of the metazoan C. elegans, Science
    • (2004) Science
    • Li, S.1
  • 38
    • 0033971642 scopus 로고    scopus 로고
    • DIP: The database of interacting proteins
    • Xenarios I., et al. DIP: the database of interacting proteins. Nucleic Acids Res. 28:2000;289-291
    • (2000) Nucleic Acids Res. , vol.28 , pp. 289-291
    • Xenarios, I.1
  • 39
    • 0037245913 scopus 로고    scopus 로고
    • BIND: The Biomolecular Interaction Network Database
    • Bader G.D., et al. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31:2003;248-250
    • (2003) Nucleic Acids Res. , vol.31 , pp. 248-250
    • Bader, G.D.1
  • 40
    • 0033655017 scopus 로고    scopus 로고
    • Biobibliometrics: Information retrieval and visualization from co-occurrences of gene names in Medline abstracts
    • Stapley, B.J. and Benoit, G. (2000) Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. Pac. Symp. Biocomput., 529-540
    • (2000) Pac. Symp. Biocomput. , pp. 529-540
    • Stapley, B.J.1    Benoit, G.2
  • 41
    • 0036371537 scopus 로고    scopus 로고
    • Mining MEDLINE: Abstracts, sentences, or phrases?
    • Ding, J. et al. (2002) Mining MEDLINE: abstracts, sentences, or phrases? Pac. Symp. Biocomput., 326-337
    • (2002) Pac. Symp. Biocomput. , pp. 326-337
    • Ding, J.1
  • 42
    • 0033292011 scopus 로고    scopus 로고
    • Automatic extraction of biological information from scientific text: Protein-protein interactions
    • Blaschke, C. et al. (1999) Automatic extraction of biological information from scientific text: protein-protein interactions. Proc. Int. Conf. Intell. Syst. Mol. Biol., 60-67
    • (1999) Proc. Int. Conf. Intell. Syst. Mol. Biol. , pp. 60-67
    • Blaschke, C.1
  • 43
    • 0033257971 scopus 로고    scopus 로고
    • Mining molecular binding terminology from biomedical text
    • Rindflesch, T.C. et al. (1999) Mining molecular binding terminology from biomedical text. Proc. AMIA Symp., 127-131
    • (1999) Proc. AMIA Symp. , pp. 127-131
    • Rindflesch, T.C.1
  • 44
    • 2942549190 scopus 로고    scopus 로고
    • PreBIND and Textomy-mining the biomedical literature for protein-protein interactions using a support vector machine
    • Donaldson I., et al. PreBIND and Textomy-mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics. 4:2003;11
    • (2003) BMC Bioinformatics , vol.4 , pp. 11
    • Donaldson, I.1
  • 45
    • 0000122278 scopus 로고
    • Statistical construction of chemical reaction mechanism from measured time-series
    • Arkin A., Ross J. Statistical construction of chemical reaction mechanism from measured time-series. J. Phys. Chem. 99:1995;970-979
    • (1995) J. Phys. Chem. , vol.99 , pp. 970-979
    • Arkin, A.1    Ross, J.2
  • 46
    • 0041744850 scopus 로고    scopus 로고
    • On the deduction of chemical reaction pathways from measurements of time series of concentrations
    • Samoilov M., et al. On the deduction of chemical reaction pathways from measurements of time series of concentrations. Chaos. 11:2001;108-114
    • (2001) Chaos , vol.11 , pp. 108-114
    • Samoilov, M.1
  • 47
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte, A.J. and Kohane, I.S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 418-429
    • (2000) Pac. Symp. Biocomput. , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 48
    • 0036355686 scopus 로고    scopus 로고
    • Integration of genomic datasets to predict protein complexes in yeast
    • Jansen R., et al. Integration of genomic datasets to predict protein complexes in yeast. J. Struct. Funct. Genomics. 2:2002;71-81
    • (2002) J. Struct. Funct. Genomics , vol.2 , pp. 71-81
    • Jansen, R.1
  • 49
    • 0036805329 scopus 로고    scopus 로고
    • Bridging structural biology and genomics: Assessing protein interaction data with known complexes
    • Edwards A.M., et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 18:2002;529-536
    • (2002) Trends Genet. , vol.18 , pp. 529-536
    • Edwards, A.M.1
  • 50
    • 0001622226 scopus 로고
    • Toward a systematic determination of complex reaction mechanisms
    • Chevalier T., et al. Toward a systematic determination of complex reaction mechanisms. J. Phys. Chem. 97:1993;6776-6787
    • (1993) J. Phys. Chem. , vol.97 , pp. 6776-6787
    • Chevalier, T.1
  • 51
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
    • Kholodenko B.N., et al. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl. Acad. Sci. U. S. A. 99:2002;12841-12846
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 12841-12846
    • Kholodenko, B.N.1
  • 52
    • 0037197832 scopus 로고    scopus 로고
    • Determination of causal connectivities of species in reaction networks
    • Vance W., et al. Determination of causal connectivities of species in reaction networks. Proc. Natl. Acad. Sci. U. S. A. 99:2002;5816-5821
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 5816-5821
    • Vance, W.1
  • 53
    • 0037452796 scopus 로고    scopus 로고
    • Experimental test of a method for determining causal connectivities of species in reactions
    • Torralba A.S., et al. Experimental test of a method for determining causal connectivities of species in reactions. Proc. Natl. Acad. Sci. U. S. A. 100:2003;1494-1498
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 1494-1498
    • Torralba, A.S.1
  • 54
    • 0034729586 scopus 로고    scopus 로고
    • A fuzzy logic approach to analyzing gene expression data
    • Woolf P.J., Wang Y. A fuzzy logic approach to analyzing gene expression data. Physiol. Genomics. 3:2000;9-15
    • (2000) Physiol. Genomics , vol.3 , pp. 9-15
    • Woolf, P.J.1    Wang, Y.2
  • 55
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang, S. et al. (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures, Pac. Symp. Biocomput., 18-29
    • (1998) Pac. Symp. Biocomput. , pp. 18-29
    • Liang, S.1
  • 56
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., et al. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7:2000;601-620
    • (2000) J. Comput. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1
  • 57
    • 0041627865 scopus 로고    scopus 로고
    • Influence of network topology and data collection on network inference
    • Smith, V.A. et al. (2003) Influence of network topology and data collection on network inference, Pac. Symp. Biocomput., 164-175
    • (2003) Pac. Symp. Biocomput. , pp. 164-175
    • Smith, V.A.1
  • 58
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink, A.J. et al. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks, Pac. Symp. Biocomput., 422-433
    • (2001) Pac. Symp. Biocomput. , pp. 422-433
    • Hartemink, A.J.1
  • 59
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E., et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34:2003;166-176
    • (2003) Nat. Genet. , vol.34 , pp. 166-176
    • Segal, E.1
  • 60
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • Ravasz E., et al. Hierarchical organization of modularity in metabolic networks. Science. 297:2002;1551-1555
    • (2002) Science , vol.297 , pp. 1551-1555
    • Ravasz, E.1
  • 61
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr S.S., et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31:2002;64-68
    • (2002) Nat. Genet. , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1
  • 62
    • 0036852181 scopus 로고    scopus 로고
    • Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons
    • Mateos A., et al. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons. Genome Res. 12:2002;1703-1715
    • (2002) Genome Res. , vol.12 , pp. 1703-1715
    • Mateos, A.1
  • 63
    • 0037336350 scopus 로고    scopus 로고
    • Integration from proteins to organs: The Physiome Project
    • Hunter P.J., Borg T.K. Integration from proteins to organs: the Physiome Project. Nat. Rev. Mol. Cell Biol. 4:2003;237-243
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 237-243
    • Hunter, P.J.1    Borg, T.K.2
  • 64
    • 33750865655 scopus 로고    scopus 로고
    • Mechanisms of length history-dependent tension in an ionic model of the cardiac myocyte
    • Bluhm W.F., et al. Mechanisms of length history-dependent tension in an ionic model of the cardiac myocyte. Am. J. Physiol. 274:1998;H1032-H1040
    • (1998) Am. J. Physiol. , vol.274
    • Bluhm, W.F.1
  • 66
    • 0037263812 scopus 로고    scopus 로고
    • MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data
    • Doniger S.W., et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4:2003;R7
    • (2003) Genome Biol. , vol.4 , pp. 7
    • Doniger, S.W.1
  • 68
    • 0142219725 scopus 로고    scopus 로고
    • Quantitative cell biology with the Virtual Cell
    • Slepchenko B.M., et al. Quantitative cell biology with the Virtual Cell. Trends Cell Biol. 13:2003;570-576
    • (2003) Trends Cell Biol. , vol.13 , pp. 570-576
    • Slepchenko, B.M.1
  • 69
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
    • Hucka M., et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 19:2003;524-531
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1
  • 70
    • 0034887203 scopus 로고    scopus 로고
    • Creating the gene ontology resource: Design and implementation
    • Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res. 11, 1425-1433
    • (2001) Genome Res. , vol.11 , pp. 1425-1433
  • 71
    • 0034495190 scopus 로고    scopus 로고
    • A knowledge model for analysis and simulation of regulatory networks
    • Rzhetsky A., et al. A knowledge model for analysis and simulation of regulatory networks. Bioinformatics. 16:2000;1120-1128
    • (2000) Bioinformatics , vol.16 , pp. 1120-1128
    • Rzhetsky, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.