-
1
-
-
77951516336
-
A harmonic calculus on the Sierpinski spaces
-
J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 8 (1989) 259-290.
-
(1989)
Japan J. Appl. Math.
, vol.8
, pp. 259-290
-
-
Kigami, J.1
-
2
-
-
84924341601
-
Harmonic calculus on p.c.f. self-similar sets
-
J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Am. Math. Soc. 335 (1993) 721-755.
-
(1993)
Trans. Am. Math. Soc.
, vol.335
, pp. 721-755
-
-
Kigami, J.1
-
3
-
-
0004075170
-
-
Cambridge University Press, New York
-
J. Kigami, Analysis on Fractals (Cambridge University Press, New York, 2001).
-
(2001)
Analysis on Fractals
-
-
Kigami, J.1
-
4
-
-
0002163683
-
Diffusion on fractals
-
Springer
-
M. Barlow, Diffusion on fractals, in Lecture Notes Math., Vol. 1690 (Springer, 1998).
-
(1998)
Lecture Notes Math.
, vol.1690
-
-
Barlow, M.1
-
5
-
-
0000722104
-
Analysis on fractals
-
R. Strichartz, Analysis on fractals, Not. Am. Math. Soc. 46 (1999) 1199-1208.
-
(1999)
Not. Am. Math. Soc.
, vol.46
, pp. 1199-1208
-
-
Strichartz, R.1
-
8
-
-
0035537148
-
The finite element method on the Sierpinski gasket
-
M. Gibbons, A. Raj and R. Strichartz, The finite element method on the Sierpinski gasket, Construct. Approx. 17 (2001) 561-588.
-
(2001)
Construct. Approx.
, vol.17
, pp. 561-588
-
-
Gibbons, M.1
Raj, A.2
Strichartz, R.3
-
9
-
-
1642370538
-
The spectrum of the Laplacian on the pentagasket
-
Birkhauser
-
B. Adams, S. A. Smith, R. Strichartz and A. Teplyaev, The spectrum of the Laplacian on the pentagasket, in Proc. Conf. "Fractals in Graz 2001", (Birkhauser, 2003), pp. 1-24.
-
(2003)
Proc. Conf. "Fractals in Graz 2001"
, pp. 1-24
-
-
Adams, B.1
Smith, S.A.2
Strichartz, R.3
Teplyaev, A.4
-
12
-
-
0001511211
-
What is not in the domain of the Laplacian on Sierpinski gasket type fractals
-
O. Ben-Bassat, R. Strichartz and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999) 197-217.
-
(1999)
J. Funct. Anal.
, vol.166
, pp. 197-217
-
-
Ben-Bassat, O.1
Strichartz, R.2
Teplyaev, A.3
-
13
-
-
0002832308
-
On a spectral analy sis for the Sierpinski gasket
-
M. Fukushima and T. Shima, On a spectral analy- sis for the Sierpinski gasket, Potent. Anal. 1 (1992) 1-35.
-
(1992)
Potent. Anal.
, vol.1
, pp. 1-35
-
-
Fukushima, M.1
Shima, T.2
-
14
-
-
0242350504
-
Fractafolds based on the Sierpinski gasket and their spectra
-
R. Strichartz, Fractafolds based on the Sierpinski gasket and their spectra, Trans. Am. Math. Soc. 355 (2003) 4019-4043.
-
(2003)
Trans. Am. Math. Soc.
, vol.355
, pp. 4019-4043
-
-
Strichartz, R.1
-
16
-
-
85193317775
-
-
B. Bockelman and R. Strichartz, in preparation
-
B. Bockelman and R. Strichartz, in preparation.
-
-
-
-
17
-
-
85193340582
-
Calculus on the Sierpinski gasket I: Polynomials, exponentials and power series
-
to appear
-
J. Needleman, R. Strichartz, A. Teplyaev and P.-L. Yang, Calculus on the Sierpinski gasket I: polynomials, exponentials and power series, J. Funct. Anal., to appear.
-
J. Funct. Anal.
-
-
Needleman, J.1
Strichartz, R.2
Teplyaev, A.3
Yang, P.-L.4
-
18
-
-
12344278906
-
-
in preparation
-
N. Ben-Gal, A. Shaw-Krauss, R. Strichartz and C. Young, Calculus on the Sierpinski Gasket II: Point Singularities, Eigenfunctions, and Normal Derivatives of the Heat Kernel, in preparation.
-
Calculus on the Sierpinski Gasket II: Point Singularities, Eigenfunctions, and Normal Derivatives of the Heat Kernel
-
-
Ben-Gal, N.1
Shaw-Krauss, A.2
Strichartz, R.3
Young, C.4
-
19
-
-
1642459141
-
p-energy and p-harmonic functions on Sierpinski gasket type fractals
-
P. E. Herman, R. Peirone and R. Strichartz, p-energy and p-harmonic functions on Sierpinski gasket type fractals, Potent. Anal. 20 (2004) 125-148.
-
(2004)
Potent. Anal.
, vol.20
, pp. 125-148
-
-
Herman, P.E.1
Peirone, R.2
Strichartz, R.3
-
20
-
-
1642399829
-
The p-laplacian on the Sierpinski gasket
-
R. Strichartz and C. Wong, The p-Laplacian on the Sierpinski gasket, Nonlinearity 17 (2004) 595-616.
-
(2004)
Nonlinearity
, vol.17
, pp. 595-616
-
-
Strichartz, R.1
Wong, C.2
|