메뉴 건너뛰기




Volumn , Issue , 2005, Pages 479-499

Lazar: Lazy structure-activity relationships for toxicity prediction

Author keywords

[No Author keywords available]

Indexed keywords


EID: 12244266265     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (8)

References (20)
  • 1
    • 33746235738 scopus 로고    scopus 로고
    • Machine learning and data mining
    • Helma S, ed, New York: Marcel Dekker
    • Kramer S, Helma C. Machine learning and data mining. In:Helma S, ed. Predictive Toxicology. New York: Marcel Dekker, 2005.
    • (2005) Predictive Toxicology
    • Kramer, S.1    Helma, C.2
  • 7
    • 0021529312 scopus 로고
    • Artificial intelligence approach to structure-activity studies: Computer automated structure evaluation of biological activity of organic molecules
    • Klopman G. Artificial intelligence approach to structure-activity studies: computer automated structure evaluation of biological activity of organic molecules. J Am Chem Soc 1984; 106:7315-7321.
    • (1984) J Am Chem Soc , vol.106 , pp. 7315-7321
    • Klopman, G.1
  • 8
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002; 46(1-3):389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 9
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Machine Learning Res 2003; 3:1371-1382.
    • (2003) Machine Learning Res , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 10
    • 0038156116 scopus 로고    scopus 로고
    • A survey of the Predictive Toxicology challenge
    • Helma C, Kramer S. A survey of the Predictive Toxicology challenge. Bioinformatics 2003; 19:1179-1182.
    • (2003) Bioinformatics , vol.19 , pp. 1179-1182
    • Helma, C.1    Kramer, S.2
  • 11
    • 0037480748 scopus 로고    scopus 로고
    • Putting the Predictive Toxicology challenge into prespective: Reflections on the results
    • Benigni R, Giuliani A. Putting the Predictive Toxicology challenge into prespective: reflections on the results. Bioinformatics 2003; 19:1194-1200.
    • (2003) Bioinformatics , vol.19 , pp. 1194-1200
    • Benigni, R.1    Giuliani, A.2
  • 12
    • 0036632452 scopus 로고    scopus 로고
    • Fragment generation and support vector machines for inducing SARs
    • Kramer S, Frank E, Helma C. Fragment generation and support vector machines for inducing SARs. SAR QSAR Environ Res 2002; 13:509-523.
    • (2002) SAR QSAR Environ Res , vol.13 , pp. 509-523
    • Kramer, S.1    Frank, E.2    Helma, C.3
  • 15
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • Piatetsky-Shapiro G, Frawley WJ, eds, Menlo Park, CA: AAAI Press=the MIT Press
    • Piatetsky-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatetsky-Shapiro G, Frawley WJ, eds. Knowledge Discovery in Databases. Menlo Park, CA: AAAI Press=the MIT Press, 1991:229-248.
    • (1991) Knowledge Discovery in Databases , pp. 229-248
    • Piatetsky-Shapiro, G.1
  • 17
    • 0023965741 scopus 로고
    • SMILES, a chemical language and information system 1. Introduction and encoding rules
    • Weininger D. SMILES, a chemical language and information system 1. Introduction and encoding rules. J Chem Inf Comput Sci 1988; 28:31-36.
    • (1988) J Chem Inf Comput Sci , vol.28 , pp. 31-36
    • Weininger, D.1
  • 18
    • 0029769266 scopus 로고    scopus 로고
    • A computerized connectivity approach for analyzing the structural basis of mutagenicity in Salmonella and its relationship with rodent carcinogenicity
    • Perotta A, Malacarne D, Taningher M, Pesenti R, Paolucci R, Parodi S. A computerized connectivity approach for analyzing the structural basis of mutagenicity in Salmonella and its relationship with rodent carcinogenicity. Environ Mol Mutagen 1996; 28:31-50.
    • (1996) Environ Mol Mutagen , vol.28 , pp. 31-50
    • Perotta, A.1    Malacarne, D.2    Taningher, M.3    Pesenti, R.4    Paolucci, R.5    Parodi, S.6
  • 19
    • 0026729742 scopus 로고
    • Testing by artificial intelligence:Computational alternatives to the determination of mutagenicity
    • Klopman G, Rosenkranz HS. Testing by artificial intelligence:computational alternatives to the determination of mutagenicity. Mutat Res 1992; 272:59-71.
    • (1992) Mutat Res , vol.272 , pp. 59-71
    • Klopman, G.1    Rosenkranz, H.S.2
  • 20
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identfication of mutagenicity inducing substructures and structure-Activity relationships of noncongeneric compounds
    • Helma C, Kramer S, DeRaedt L. Data mining and machine learning techniques for the identfication of mutagenicity inducing substructures and structure-Activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 2004; 44:1402-1411.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1402-1411
    • Helma, C.1    Kramer, S.2    DeRaedt, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.