메뉴 건너뛰기




Volumn , Issue , 2004, Pages 617-622

Clustering moving objects

Author keywords

Algorithms; Clustering; Micro cluster; Moving object

Indexed keywords

ALGORITHMS; CORRELATION METHODS; DATA ACQUISITION; IMAGE COMPRESSION; MOBILE COMPUTING; MOTION ESTIMATION; OBJECT RECOGNITION; REAL TIME SYSTEMS;

EID: 12244261030     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014129     Document Type: Conference Paper
Times cited : (203)

References (20)
  • 1
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: Ordering points to identify the clustering structure
    • M. Ankerst, M. Breunig, H. P. Kriegel, and J. Sander. OPTICS: ordering points to identify the clustering structure. SIGMOD, 1999.
    • (1999) SIGMOD
    • Ankerst, M.1    Breunig, M.2    Kriegel, H.P.3    Sander, J.4
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD, 1998.
    • (1998) SIGMOD
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 4
    • 85084631005 scopus 로고    scopus 로고
    • Sweeping lines and line segments with a heap
    • J. Bash, L. J. Guibas, and G. D. Ramkumar. Sweeping lines and line segments with a heap. SoCG, 1997.
    • (1997) SoCG
    • Bash, J.1    Guibas, L.J.2    Ramkumar, G.D.3
  • 5
    • 72849116192 scopus 로고    scopus 로고
    • Translation-invariant mixture models for curve clustering
    • D. Chudova, S. Gaffney, E. Mjolsness, and P. Smyth. Translation-invariant mixture models for curve clustering. SIGKDD, 2003.
    • (2003) SIGKDD
    • Chudova, D.1    Gaffney, S.2    Mjolsness, E.3    Smyth, P.4
  • 8
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large databases. SIGMOD, 1998.
    • (1998) SIGMOD
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 0035165992 scopus 로고    scopus 로고
    • Clustering motion
    • S. Har-Peled. Clustering motion. FOCS, 2001.
    • (2001) FOCS
    • Har-Peled, S.1
  • 10
    • 85012111044 scopus 로고    scopus 로고
    • Continuous k-nearest neighbor queries for continuously moving points with updates
    • G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for continuously moving points with updates. VLDB, 2003.
    • (2003) VLDB
    • Iwerks, G.S.1    Samet, H.2    Smith, K.3
  • 12
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. H. Han, and V. Kumar. CHAMELEON: a hierarchical clustering algorithm using dynamic modeling. COMPUTER, 1999.
    • (1999) COMPUTER
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 14
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. Math. Statist, 1967.
    • (1967) Proc. 5th Berkeley Symp. Math. Statist
    • MacQueen, J.1
  • 15
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB, 1994.
    • (1994) VLDB
    • Ng, R.1    Han, J.2
  • 17
    • 0036373494 scopus 로고    scopus 로고
    • Time-parameterized queries in spatial-temporal databases
    • Y. Tao and D. Papadias. Time-parameterized queries in spatial-temporal databases. SIGMOD, 2002.
    • (2002) SIGMOD
    • Tao, Y.1    Papadias, D.2
  • 18
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • W. Wang, J. Yang, and R. Muntz. STING: a statistical information grid approach to spatial data mining. VLDB, 1997.
    • (1997) VLDB
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 20
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.