메뉴 건너뛰기




Volumn 54, Issue 3, 2002, Pages 577-584

Beta approximation to the distribution of Kolmogorov-Smirnov statistic

Author keywords

Approximation; Beta distribution; Kolmogorov Smirnov statistic; Kurtosis; p value; Skewness

Indexed keywords

COMPUTER SIMULATION; MATHEMATICAL MODELS; MONTE CARLO METHODS; POPULATION STATISTICS; PROBABILITY DENSITY FUNCTION; PROBABILITY DISTRIBUTIONS; REGRESSION ANALYSIS; STATISTICAL TESTS;

EID: 12244253719     PISSN: 00203157     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1022463111224     Document Type: Article
Times cited : (14)

References (18)
  • 1
    • 84937351638 scopus 로고
    • Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size
    • Birnbaum, Z. W. (1952). Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size, J. Amer. Statist. Assoc., 47, 425-441.
    • (1952) J. Amer. Statist. Assoc. , vol.47 , pp. 425-441
    • Birnbaum, Z.W.1
  • 2
    • 0003233889 scopus 로고
    • One-sided confidence contours for probability distribution functions
    • Birnbaum, Z. W. and Tingey, F. H. (1951). One-sided confidence contours for probability distribution functions, Ann. Math. Statist., 22, 595-596.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 595-596
    • Birnbaum, Z.W.1    Tingey, F.H.2
  • 3
    • 0011521327 scopus 로고    scopus 로고
    • Transformations of the empirical measure and Kolmogorov-Smirnov tests
    • Cabaña, A. (1996). Transformations of the empirical measure and Kolmogorov-Smirnov tests, Ann. Statist., 24, 2020-2035.
    • (1996) Ann. Statist. , vol.24 , pp. 2020-2035
    • Cabaña, A.1
  • 4
    • 21844493784 scopus 로고
    • Goodness-of-fit and comparison tests of the Kolmogorov-Smirnov type for bivariate populations
    • Cabaña, A. and Cabaña, E. M. (1994). Goodness-of-fit and comparison tests of the Kolmogorov-Smirnov type for bivariate populations, Ann. Statist., 22, 1447-1459.
    • (1994) Ann. Statist. , vol.22 , pp. 1447-1459
    • Cabaña, A.1    Cabaña, E.M.2
  • 5
    • 0031321245 scopus 로고    scopus 로고
    • Transformed empirical processes and modified Kolmogorov-Smirnov tests for multivariate distributions
    • Cabaña, A. and Cabaña, E. M. (1997). Transformed empirical processes and modified Kolmogorov-Smirnov tests for multivariate distributions, Ann. Statist., 25, 2388-2409.
    • (1997) Ann. Statist. , vol.25 , pp. 2388-2409
    • Cabaña, A.1    Cabaña, E.M.2
  • 7
    • 0542397867 scopus 로고    scopus 로고
    • Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test
    • Friedrich, T. and Schellhaas, H. (1998). Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test, Statist. Papers, 39, 361-375.
    • (1998) Statist. Papers , vol.39 , pp. 361-375
    • Friedrich, T.1    Schellhaas, H.2
  • 9
    • 0031572682 scopus 로고    scopus 로고
    • A multivariate Kolmogorov-Smirnov test of goodness of fit
    • Justel, A., Peña, D. and Zamar, R. (1997). A multivariate Kolmogorov-Smirnov test of goodness of fit, Statist. Probab. Lett., 35, 251-259.
    • (1997) Statist. Probab. Lett. , vol.35 , pp. 251-259
    • Justel, A.1    Peña, D.2    Zamar, R.3
  • 10
    • 0013225571 scopus 로고    scopus 로고
    • On tail probabilities of Kolmogorov-Smirnov statistics based on uniform mixing processes
    • Kim, T. Y. (1999). On tail probabilities of Kolmogorov-Smirnov statistics based on uniform mixing processes, Statist. Probab. Lett., 43, 217-223.
    • (1999) Statist. Probab. Lett. , vol.43 , pp. 217-223
    • Kim, T.Y.1
  • 12
    • 12244251486 scopus 로고
    • Coefficients of the asymptotic distribution of the Kolmogorov-Smirnov statistic when parameters are estimated
    • Kulinskaya, E. (1995). Coefficients of the asymptotic distribution of the Kolmogorov-Smirnov statistic when parameters are estimated, J. Nonparametr. Statist., 5, 43-60.
    • (1995) J. Nonparametr. Statist. , vol.5 , pp. 43-60
    • Kulinskaya, E.1
  • 13
    • 12244261669 scopus 로고
    • A note on the estimation of a distribution by confidence limits
    • Massey, F. J. (1950). A note on the estimation of a distribution by confidence limits, Ann. Math. Statist., 21, 116-119.
    • (1950) Ann. Math. Statist. , vol.21 , pp. 116-119
    • Massey, F.J.1
  • 14
    • 84941871856 scopus 로고
    • The Kolmogorov-Smirnov test for goodness of fit
    • Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit, J. Amer. Statist. Assoc., 46, 68-77.
    • (1951) J. Amer. Statist. Assoc. , vol.46 , pp. 68-77
    • Massey, F.J.1
  • 15
    • 84947384266 scopus 로고
    • Table of percentage points of Kolmogorov statistics
    • Miller, L. H. (1956). Table of percentage points of Kolmogorov statistics, J. Amer. Statist. Assoc., 51, 111-121.
    • (1956) J. Amer. Statist. Assoc. , vol.51 , pp. 111-121
    • Miller, L.H.1
  • 16
    • 12244272209 scopus 로고
    • On the multivariate Kolmogorov-Smirnov distribution
    • Paramasamy, S. (1992). On the multivariate Kolmogorov-Smirnov distribution, Statist. Probab. Lett., 15, 149-155.
    • (1992) Statist. Probab. Lett. , vol.15 , pp. 149-155
    • Paramasamy, S.1
  • 17
    • 0013276266 scopus 로고
    • On tail probabilities of Kolmogorov-Smirnov statistic based on strong mixing processes
    • Rama, K. Y. S. (1993). On tail probabilities of Kolmogorov-Smirnov statistic based on strong mixing processes, Statist. Probab. Lett., 16, 369-377.
    • (1993) Statist. Probab. Lett. , vol.16 , pp. 369-377
    • Rama, K.Y.S.1
  • 18
    • 0001893703 scopus 로고
    • Estimate of derivation between empirical distribution functions in two independent samples
    • (in Russian)
    • Smirnov, N. V. (1939). Estimate of derivation between empirical distribution functions in two independent samples, Bulletin of Moskow University, 2, 3-16 (in Russian).
    • (1939) Bulletin of Moskow University , vol.2 , pp. 3-16
    • Smirnov, N.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.