메뉴 건너뛰기




Volumn 63, Issue SPEC. ISS., 2005, Pages 359-379

Fuzzy logic and evolutionary algorithm - Two techniques in rule extraction from neural networks

Author keywords

Evolutionary algorithm; Neural network; Rule extraction

Indexed keywords

EVOLUTIONARY ALGORITHMS; FEATURE EXTRACTION; INFORMATION ANALYSIS; NEURAL NETWORKS; PERFORMANCE;

EID: 12144269984     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.04.015     Document Type: Article
Times cited : (14)

References (22)
  • 1
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained neural networks
    • R. Andrews, J. Diederich, A. Tickle, A survey and critique of techniques for extracting rules from trained neural networks, Knowledge-Based Systems 8 (1995) 373-389.
    • (1995) Knowledge-Based Systems , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.3
  • 2
    • 0008091563 scopus 로고    scopus 로고
    • Rule extraction from trained neural network using genetic algorithm
    • D.A. Arbatli, L.H. Akin, Rule extraction from trained neural network using genetic algorithm, Nonlinear Anal. Theor. Method. Appl. 30 (3) (1997) 1639-1648.
    • (1997) Nonlinear Anal. Theor. Method. Appl. , vol.30 , Issue.3 , pp. 1639-1648
    • Arbatli, D.A.1    Akin, L.H.2
  • 3
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic algorithm
    • L. Castillo, A. González, R. Pérez, Including a simplicity criterion in the selection of the best rule in a genetic algorithm, Fuzzy Set. Syst. 120 (2001) 309-321.
    • (2001) Fuzzy Set. Syst. , vol.120 , pp. 309-321
    • Castillo, L.1    González, A.2    Pérez, R.3
  • 4
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • W. Duch, R. Adamczak, K. Grabczewski, A new methodology of extraction, optimization and application of crisp and fuzzy logical rules, IEEE Trans. Neural Networ. 12 (2001) 277-306.
    • (2001) IEEE Trans. Neural Networ. , vol.12 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 5
    • 0028482883 scopus 로고
    • Rule generation from neural network
    • L.M. Fu Rule generation from neural network IEEE Trans. Syst. Man Cyber. 24 8 1994 1114-1124
    • (1994) IEEE Trans. Syst. Man Cyber. , vol.24 , Issue.8 , pp. 1114-1124
    • Fu, L.M.1
  • 6
    • 0000182788 scopus 로고    scopus 로고
    • Processing individual fuzzy attributes for fuzzy rule induction
    • T.P. Hong, J.-B. Chen, Processing individual fuzzy attributes for fuzzy rule induction, Fuzzy Set. Syst. 112 (2000) 127-140.
    • (2000) Fuzzy Set. Syst. , vol.112 , pp. 127-140
    • Hong, T.P.1    Chen, J.-B.2
  • 7
    • 4143101674 scopus 로고    scopus 로고
    • Linguistic rule extraction from neural network for high-dimensional classification problems
    • Complexity International 6, Monash University, Australia
    • H. Ishibuchi, M. Nii, K. Tanaka, Linguistic rule extraction from neural network for high-dimensional classification problems, Complexity International 6, Monash University, Australia, 1998.
    • (1998)
    • Ishibuchi, H.1    Nii, M.2    Tanaka, K.3
  • 8
    • 0033083823 scopus 로고    scopus 로고
    • An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems
    • I. Jagielska, Ch. Matthews, T. Whitfort, An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems, Neurocomputing 24 (1999) 37-54.
    • (1999) Neurocomputing , vol.24 , pp. 37-54
    • Jagielska, I.1    Matthews, Ch.2    Whitfort, T.3
  • 12
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • S. Mitra, H. Yoichi, Neuro-fuzzy rule generation: Survey in soft computing framework, IEEE Trans. Neural Networ. 11 (3) (2000) 748-768.
    • (2000) IEEE Trans. Neural Networ. , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Yoichi, H.2
  • 13
    • 0003408496 scopus 로고    scopus 로고
    • Uci repository of machine learning databases
    • Ph.D. Thesis, Department of Information and Computer Science, University of California, Irvine, CA
    • P.M. Murphy, D.W. Aha, Uci repository of machine learning databases, Ph.D. Thesis, Department of Information and Computer Science, University of California, Irvine, CA, 1998.
    • (1998)
    • Murphy, P.M.1    Aha, D.W.2
  • 14
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rule from medical data
    • D. Nauck, R. Kruse, Obtaining interpretable fuzzy classification rule from medical data, Artif. Intell. Med. 16 (1999) 149-169.
    • (1999) Artif. Intell. Med. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 15
    • 84883800261 scopus 로고    scopus 로고
    • Interpretation of trained neural networks by rule extraction
    • LNC 2206, Springer, Berlin, Heilderberg
    • V. Palade, D.-C. Neagu, R.-J. Patton, Interpretation of trained neural networks by rule extraction. Fuzzy Days 2001, LNC 2206, Springer, Berlin, Heilderberg, 2001, pp. 152-161.
    • (2001) Fuzzy Days 2001 , pp. 152-161
    • Palade, V.1    Neagu, D.-C.2    Patton, R.-J.3
  • 16
    • 0035483857 scopus 로고    scopus 로고
    • Fuzzy coco: A cooperative-coevolutionary approach to fuzzy modelling
    • C. Pena-Reyes, M. Sipper, Fuzzy coco: A cooperative-coevolutionary approach to fuzzy modelling, IEEE Trans. Fuzzy Syst. 9 (5) (2001) 727-737.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.5 , pp. 727-737
    • Pena-Reyes, C.1    Sipper, M.2
  • 17
    • 0003590592 scopus 로고    scopus 로고
    • Symbolic interpretation of artificial neural networks
    • Technical Report, The Computer and Vision Research Center, University of Texas, Austin
    • I. Taha, J. Ghosh, Symbolic interpretation of artificial neural networks, Technical Report, The Computer and Vision Research Center, University of Texas, Austin, 1996.
    • (1996)
    • Taha, I.1    Ghosh, J.2
  • 19
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge based neural networks
    • G.G. Towell, J. Shavlik, Extracting refined rules from knowledge based neural networks, Mach. Learn. 131 (1993) 71-101.
    • (1993) Mach. Learn. , vol.131 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.2
  • 20
    • 12144283839 scopus 로고    scopus 로고
    • Rule induction with genetic sequential covering algorithm (geseco)
    • (EIS 2000), International Computer Science Conventions, Canada/Switzerland
    • A. Weiters, J. Paredis, Rule induction with genetic sequential covering algorithm (geseco), in: Proceedings of the second ICSC Symposium on Engineering of Intelligent Systems, (EIS 2000), International Computer Science Conventions, Canada/Switzerland, 2000, pp. 245-251.
    • (2000) Proceedings of the Second ICSC Symposium on Engineering of Intelligent Systems , pp. 245-251
    • Weiters, A.1    Paredis, J.2
  • 21
    • 0001857559 scopus 로고    scopus 로고
    • Rule extraction for fuzzy modelling
    • C.-C. Wong, N.-S. Lin, Rule extraction for fuzzy modelling, Fuzzy Set. Syst. 88 (1997) 23-30.
    • (1997) Fuzzy Set. Syst. , vol.88 , pp. 23-30
    • Wong, C.-C.1    Lin, N.S.2
  • 22
    • 0030283584 scopus 로고    scopus 로고
    • A genetic algorithm for generating fuzzy classification rules
    • Y. Yuan, Z. Huan, A genetic algorithm for generating fuzzy classification rules, Fuzzy Set. Syst. 84 (1996) 1-19.
    • (1996) Fuzzy Set. Syst. , vol.84 , pp. 1-19
    • Yuan, Y.1    Huan, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.