-
1
-
-
0033883972
-
Nonpositive discrete boundary value problems
-
R. P. AGARWAL AND D. O'REGAN, Nonpositive discrete boundary value problems, Nonlinear Analysis, 39 (2000), 207-215.
-
(2000)
Nonlinear Analysis
, vol.39
, pp. 207-215
-
-
Agarwal, R.P.1
O'Regan, D.2
-
2
-
-
0001815443
-
Boundary value problems for discrete equations
-
R. P. AGARWAL AND D. O'REGAN, Boundary value problems for discrete equations, Appl. Math. Letters, 10 (1997), 83-89.
-
(1997)
Appl. Math. Letters
, vol.10
, pp. 83-89
-
-
Agarwal, R.P.1
O'Regan, D.2
-
3
-
-
0003562888
-
-
Kluwer Acad. Publ, Dordrecht
-
R. P. AGARWAL, D. O'REGAN AND P. J. Y. WONG, Positive solutions of differential, difference and integral equations, Kluwer Acad. Publ, Dordrecht, (1999).
-
(1999)
Positive Solutions of Differential, Difference and Integral Equations
-
-
Agarwal, R.P.1
O'Regan, D.2
Wong, P.J.Y.3
-
4
-
-
0041184915
-
Singular discrete boundary value problems
-
R. P. AGARWAL AND D. O'REGAN, Singular discrete boundary value problems, Appl. Math. Letters, 12 (1999), 127-131.
-
(1999)
Appl. Math. Letters
, vol.12
, pp. 127-131
-
-
Agarwal, R.P.1
O'Regan, D.2
-
5
-
-
0037084478
-
Eigenvalues and the one-dimensional p-Laplacian
-
R. P. AGARWAL, H. LU AND D. O'REGAN, Eigenvalues and the one-dimensional p-Laplacian, Journal of Mathematics Analysis and Applications, 266 (2002), 383-400.
-
(2002)
Journal of Mathematics Analysis and Applications
, vol.266
, pp. 383-400
-
-
Agarwal, R.P.1
Lu, H.2
O'Regan, D.3
-
6
-
-
0037736937
-
On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problems
-
A. BEN-NAOUM AND C. DE COSTER, On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problems, Differential and Integral Equations, 10 (1997), 1093-1112.
-
(1997)
Differential and Integral Equations
, vol.10
, pp. 1093-1112
-
-
Ben-Naoum, A.1
De Coster, C.2
-
7
-
-
0343442489
-
Multiplicity of positive radial solutions for an elliptic system on an annulus
-
D. DUNNINGER AND H. WANG, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Analysis, 42 (2000), 803-811.
-
(2000)
Nonlinear Analysis
, vol.42
, pp. 803-811
-
-
Dunninger, D.1
Wang, H.2
-
8
-
-
0031281241
-
Existence and multiplicity of positive radial solutions for elliptic systems
-
D. DUNNINGER AND H. WANG, Existence and multiplicity of positive radial solutions for elliptic systems, Nonlinear Analysis, 29 (1997), 1051-1060.
-
(1997)
Nonlinear Analysis
, vol.29
, pp. 1051-1060
-
-
Dunninger, D.1
Wang, H.2
-
9
-
-
0001328382
-
Pairs of positive solutions for the one-dimensional p-Laplacian
-
C. DE COSTER, Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear Analysis, 23 (1994), 669-681.
-
(1994)
Nonlinear Analysis
, vol.23
, pp. 669-681
-
-
De Coster, C.1
-
11
-
-
43949161468
-
Multiple positive solutions of some boundary value problems
-
L. ERBE, S. HU AND H. WANG, Multiple positive solutions of some boundary value problems, Journal of Mathematics Analysis and Applications, 184 (1994), 743-748.
-
(1994)
Journal of Mathematics Analysis and Applications
, vol.184
, pp. 743-748
-
-
Erbe, L.1
Hu, S.2
Wang, H.3
-
12
-
-
0343826010
-
Multiple positive solutions for the one-dimensional p-Laplacian
-
L. KONG AND J. WANG, Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 42 (2000), 1327-1333.
-
(2000)
Nonlinear Anal.
, vol.42
, pp. 1327-1333
-
-
Kong, L.1
Wang, J.2
-
13
-
-
0001662218
-
Some general existence principles and results for [φ(y′)] ′ = q(t)f(t,y,y′), (0
-
D. O'REGAN, Some general existence principles and results for [φ(y′)]′ = q(t)f(t,y,y′), (0
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 648-668
-
-
O'Regan, D.1
-
16
-
-
21744457995
-
The existence of positive solutions for the one-dimensional p-Laplacian
-
J. Y. WANG, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125 (1997), 2275-2283.
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, pp. 2275-2283
-
-
Wang, J.Y.1
-
17
-
-
84972576250
-
Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem
-
J. WANG, W. GAO AND Z. LIN, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J. 47 (1995), 327-344.
-
(1995)
Tohoku Math. J.
, vol.47
, pp. 327-344
-
-
Wang, J.1
Gao, W.2
Lin, Z.3
-
18
-
-
0002746770
-
On the existence of positive solutions for semilinear elliptic equations in the annulus
-
H. WANG, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 109 (1994), 1-7.
-
(1994)
J. Differential Equations
, vol.109
, pp. 1-7
-
-
Wang, H.1
-
19
-
-
0034670596
-
Upper and lower solution method and a singular boundary value problem for the one-dimension p-Laplacian
-
D. Q. JIANG AND W. GAO, Upper and lower solution method and a singular boundary value problem for the one-dimension p-Laplacian, J. Math. Anal. Appl. 252 (2000), 631-648.
-
(2000)
J. Math. Anal. Appl.
, vol.252
, pp. 631-648
-
-
Jiang, D.Q.1
Gao, W.2
-
20
-
-
0035452140
-
Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimension p-Laplacian
-
D. Q. JIANG, Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimension p-Laplacian, Computers and Mathematics with Applications, 42 (2001), 927-940.
-
(2001)
Computers and Mathematics with Applications
, vol.42
, pp. 927-940
-
-
Jiang, D.Q.1
-
21
-
-
0002448224
-
On the existence of nonnegative radial solutions for p-Laplacian elliptic systems
-
D. Q. JIANG AND H. LIU, On the existence of nonnegative radial solutions for p-Laplacian elliptic systems, Ann. Polon. Math. LXXI.1 (1999), 19-29.
-
(1999)
Ann. Polon. Math.
, vol.LXXI.1
, pp. 19-29
-
-
Jiang, D.Q.1
Liu, H.2
-
22
-
-
37249048439
-
Upper and lower solutions method and a superlinear singular discrete boundary value problem
-
to appear
-
D. Q. JIANG, P. Y. PANG AND R. P. AGARWAL, Upper and lower solutions method and a superlinear singular discrete boundary value problem, Dynamics Systems and Applications, to appear.
-
Dynamics Systems and Applications
-
-
Jiang, D.Q.1
Pang, P.Y.2
Agarwal, R.P.3
-
23
-
-
12144282265
-
-
D. Q. JIANG, L. ZHANG, D. O'REGAN AND R. P. AGARWAL, Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension p-Laplacian, 13 (2003), 179-199.
-
(2003)
Existence Theory for Single and Multiple Solutions to Singular Positone Discrete Dirichlet Boundary Value Problems to the One-dimension p-Laplacian
, vol.13
, pp. 179-199
-
-
Jiang, D.Q.1
Zhang, L.2
O'Regan, D.3
Agarwal, R.P.4
-
24
-
-
0001583818
-
Positive solutions of semilinear differential equations with singularities
-
KUNQUAN LAN AND JEFFREY R. L. WEBB, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.
-
(1998)
J. Differential Equations
, vol.148
, pp. 407-421
-
-
Lan, K.1
Webb, J.R.L.2
|