-
1
-
-
0022102590
-
Integral transformations useful for the accelerated summation of periodic, free-space Green's functions
-
Aug.
-
R. Lame, P. Klock, and P. Mayes, "Integral transformations useful for the accelerated summation of periodic, free-space Green's functions," IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 734-736, Aug. 1985.
-
(1985)
IEEE Trans. Microwave Theory Tech.
, vol.MTT-33
, pp. 734-736
-
-
Lame, R.1
Klock, P.2
Mayes, P.3
-
2
-
-
0025673265
-
Accelerating the convergence of series representing the free space periodic Green's function
-
Dec.
-
S. Singh, W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green's function," IEEE Trans. Antenna Propagat., vol. 38, pp. 1958-1962, Dec. 1990.
-
(1990)
IEEE Trans. Antenna Propagat.
, vol.38
, pp. 1958-1962
-
-
Singh, S.1
Richards, W.F.2
Zinecker, J.R.3
Wilton, D.R.4
-
3
-
-
0026186446
-
Efficient computation of the free-space periodic Green's functions
-
July
-
S. Singh and R. Singh, "Efficient computation of the free-space periodic Green's functions," IEEE Trans. Microwave Tech., vol. 39, pp. 1226-1229, July 1991.
-
(1991)
IEEE Trans. Microwave Tech.
, vol.39
, pp. 1226-1229
-
-
Singh, S.1
Singh, R.2
-
4
-
-
11144297023
-
An efficient numerical evaluation of the Green's functions for the Helmholtz operator on periodic structures
-
K. E. Jordan, G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's functions for the Helmholtz operator on periodic structures," J. Comput. Phys., vol. 63, pp. 223-235, 1998.
-
(1998)
J. Comput. Phys.
, vol.63
, pp. 223-235
-
-
Jordan, K.E.1
Richter, G.R.2
Sheng, P.3
-
5
-
-
0009290672
-
Ewald's method revisted rapidly convergent series representations of certain Green's functions
-
V. G. Papaniicolaou, "Ewald's method revisted rapidly convergent series representations of certain Green's functions," J. Comput. Anal. Applicat., vol. 1, no. 1, pp. 105-114, 1999.
-
(1999)
J. Comput. Anal. Applicat.
, vol.1
, Issue.1
, pp. 105-114
-
-
Papaniicolaou, V.G.1
-
6
-
-
0029251640
-
Using the matrix pencil method to estimate the parameters of a sum of complex exponentials
-
Feb.
-
T. K. Sarkar and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antenna Propagat. Mag., vol. 37, pp. 48-55, Feb. 1995.
-
(1995)
IEEE Antenna Propagat. Mag.
, vol.37
, pp. 48-55
-
-
Sarkar, T.K.1
Pereira, O.2
-
7
-
-
0002769018
-
n) transformation
-
Apr.
-
n) transformation," Math. Tables Aids Comput., vol. 10, no. 54, pp. 90-96, Apr. 1956.
-
(1956)
Math. Tables Aids Comput.
, vol.10
, Issue.54
, pp. 90-96
-
-
Wynn, P.1
-
8
-
-
0031098726
-
Multilayered media Green's functions in integral equation formulations
-
Mar.
-
K. A. Michalski and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Microwave Theory Tech., vol. 45, pp. 508-519, Mar. 1997.
-
(1997)
IEEE Trans. Microwave Theory Tech.
, vol.45
, pp. 508-519
-
-
Michalski, K.A.1
Mosig, J.R.2
-
9
-
-
0025399399
-
Algorithm 680-More efficient computation of the complex error function
-
G. P. M. Poppe and C. M. J. Wijers, "Algorithm 680-More efficient computation of the complex error function," ACM Trans. Math. Software, vol. 16, p. 47, 1990.
-
(1990)
ACM Trans. Math. Software
, vol.16
, pp. 47
-
-
Poppe, G.P.M.1
Wijers, C.M.J.2
-
10
-
-
85171863190
-
Non-linear transformations of divergent and slowly convergent sequences
-
D. Shanks, "Non-linear transformations of divergent and slowly convergent sequences," J. Math. Phys., vol. 34, pp. 1-42, 1965.
-
(1965)
J. Math. Phys.
, vol.34
, pp. 1-42
-
-
Shanks, D.1
|