-
2
-
-
11744331410
-
-
Sömjen, G. J.; Ringel, Y.; Konikoff, F. M.; Rosenberg, R.; Gilat, T. J. Lipid Res. 1997, 38, 1088.
-
(1997)
J. Lipid Res.
, vol.38
, pp. 1088
-
-
Sömjen, G.J.1
Ringel, Y.2
Konikoff, F.M.3
Rosenberg, R.4
Gilat, T.5
-
3
-
-
0031041563
-
-
Konikoff, F. M.; Laufer, H.; Messer, G.; Gilat, T. J. Hepatol. 1997, 26, 703.
-
(1997)
J. Hepatol.
, vol.26
, pp. 703
-
-
Konikoff, F.M.1
Laufer, H.2
Messer, G.3
Gilat, T.4
-
4
-
-
0023947021
-
-
Harvey, P. R.; Sömjen, G.; Gilat, T.; Gallinger, S.; Strasberg, S. M. Biochim. Biophys. Acta 1988, 958, 10.
-
(1988)
Biochim. Biophys. Acta
, vol.958
, pp. 10
-
-
Harvey, P.R.1
Sömjen, G.2
Gilat, T.3
Gallinger, S.4
Strasberg, S.M.5
-
6
-
-
0024340486
-
-
Peled, Y.; Halpern, Z.; Eitan, B.; Goldman, G.; Konikoff, F.; Gilat, T. Biochim. Biophys. Acta 1989, 1003, 246.
-
(1989)
Biochim. Biophys. Acta
, vol.1003
, pp. 246
-
-
Peled, Y.1
Halpern, Z.2
Eitan, B.3
Goldman, G.4
Konikoff, F.5
Gilat, T.6
-
7
-
-
0022641699
-
-
Halpern, Z.; Dudley, M. A.; Lynn, M. P.; Nader, J. M.; Breuer, A. C.; Holzbach, R. T. J. Lipid Res. 1986, 27, 295.
-
(1986)
J. Lipid Res.
, vol.27
, pp. 295
-
-
Halpern, Z.1
Dudley, M.A.2
Lynn, M.P.3
Nader, J.M.4
Breuer, A.C.5
Holzbach, R.T.6
-
8
-
-
0025807833
-
-
Sömjen, G. J.; Coleman, R.; Koch M. H. J.; Wachtel, E.; Billington, D.; Towns-Andrews, T.; Gilat, T. FEBS Lett. 1991, 289, 163.
-
(1991)
FEBS Lett.
, vol.289
, pp. 163
-
-
Sömjen, G.J.1
Coleman, R.2
Koch, M.H.J.3
Wachtel, E.4
Billington, D.5
Towns-Andrews, T.6
Gilat, T.7
-
9
-
-
11744313180
-
-
Sömjen, G. J.; Lipka, G.; Schulthess, G.; Koch M. H. J.; Wachtel, E.; Gilat, T.; Hauser, H. Biophys. J. 1995, 68, 1.
-
(1995)
Biophys. J.
, vol.68
, pp. 1
-
-
Sömjen, G.J.1
Lipka, G.2
Schulthess, G.3
Koch, M.H.J.4
Wachtel, E.5
Gilat, T.6
Hauser, H.7
-
13
-
-
0028100636
-
-
Smaby, J. M.; Brockman, H L.; Brown, R. E. Biochemistry 1994, 33, 9135.
-
(1994)
Biochemistry
, vol.33
, pp. 9135
-
-
Smaby, J.M.1
Brockman, H.L.2
Brown, R.E.3
-
14
-
-
0030927202
-
-
Worthman, L.-A. D.; Nag, K.; Davis, P. J.; Keough, K. M. W. Biophys. J. 1997, 72, 2569.
-
(1997)
Biophys. J.
, vol.72
, pp. 2569
-
-
Worthman, L.-A.D.1
Nag, K.2
Davis, P.J.3
Keough, K.M.W.4
-
15
-
-
0001171432
-
-
Riste, Sherrington, D., Eds.; Plenum Press: New York, Geilo, Norway
-
z. More detailed descriptions of the GIXD method used for monolayer structure determination are given in: Als-Nielsen, J.; Kjaer, K. Proceedings of The Nato Advanced Study Institute, Phase Transitions in Soft Condensed Matter; Riste, Sherrington, D., Eds.; Plenum Press: New York, Geilo, Norway, 1989; p 113. Als-Nielsen, J.; Jacquemain, D.; Kjaer, K.; Leveiller, F.; Lahav, M.; Leiserowitz, L. Phys. Rep. 1994, 246, 251.
-
(1989)
Proceedings of the Nato Advanced Study Institute, Phase Transitions in Soft Condensed Matter
, pp. 113
-
-
Als-Nielsen, J.1
Kjaer, K.2
-
16
-
-
0345217118
-
-
z. More detailed descriptions of the GIXD method used for monolayer structure determination are given in: Als-Nielsen, J.; Kjaer, K. Proceedings of The Nato Advanced Study Institute, Phase Transitions in Soft Condensed Matter; Riste, Sherrington, D., Eds.; Plenum Press: New York, Geilo, Norway, 1989; p 113. Als-Nielsen, J.; Jacquemain, D.; Kjaer, K.; Leveiller, F.; Lahav, M.; Leiserowitz, L. Phys. Rep. 1994, 246, 251.
-
(1994)
Phys. Rep.
, vol.246
, pp. 251
-
-
Als-Nielsen, J.1
Jacquemain, D.2
Kjaer, K.3
Leveiller, F.4
Lahav, M.5
Leiserowitz, L.6
-
17
-
-
0006940141
-
-
D = 1.47 ± 0.06, the calculated thickness of the monolayer was in agreement with the axis length of the cholesterol molecule. The same value was used for all the other ellipsometry analysis (see: Corsel, J. W.; Willems, G. M.; Kop, J. M. M.; Cuypers, P. A.; Hermens, W. Th. J. Colloid Interface Sci. 1986, 111, 544). Ellipsometric angle and surface pressure were recorded simultaneously during compression at 5 °C. Experiments were also performed on films relaxing at a fixed area per molecule.
-
(1981)
Annu. Rev. Mater. Sci.
, vol.11
, pp. 97
-
-
Theeten, J.B.1
Aspnes, D.E.2
-
18
-
-
84956088767
-
-
D = 1.47 ± 0.06, the calculated thickness of the monolayer was in agreement with the axis length of the cholesterol molecule. The same value was used for all the other ellipsometry analysis (see: Corsel, J. W.; Willems, G. M.; Kop, J. M. M.; Cuypers, P. A.; Hermens, W. Th. J. Colloid Interface Sci. 1986, 111, 544). Ellipsometric angle and surface pressure were recorded simultaneously during compression at 5 °C. Experiments were also performed on films relaxing at a fixed area per molecule.
-
(1993)
Europhys. Lett.
, vol.21
, pp. 773
-
-
Berge, B.1
Renault, A.2
-
19
-
-
25944442748
-
-
D = 1.47 ± 0.06, the calculated thickness of the monolayer was in agreement with the axis length of the cholesterol molecule. The same value was used for all the other ellipsometry analysis (see: Corsel, J. W.; Willems, G. M.; Kop, J. M. M.; Cuypers, P. A.; Hermens, W. Th. J. Colloid Interface Sci. 1986, 111, 544). Ellipsometric angle and surface pressure were recorded simultaneously during compression at 5 °C. Experiments were also performed on films relaxing at a fixed area per molecule.
-
(1991)
Rev. Sci. Instrum.
, vol.62
, pp. 936
-
-
Henon, S.1
Meunier, J.2
-
20
-
-
0022079687
-
-
D = 1.47 ± 0.06, the calculated thickness of the monolayer was in agreement with the axis length of the cholesterol molecule. The same value was used for all the other ellipsometry analysis (see: Corsel, J. W.; Willems, G. M.; Kop, J. M. M.; Cuypers, P. A.; Hermens, W. Th. J. Colloid Interface Sci. 1986, 111, 544). Ellipsometric angle and surface pressure were recorded simultaneously during compression at 5 °C. Experiments were also performed on films relaxing at a fixed area per molecule.
-
(1986)
J. Colloid Interface Sci.
, vol.111
, pp. 544
-
-
Corsel, J.W.1
Willems, G.M.2
Kop, J.M.M.3
Cuypers, P.A.4
Hermens, W.Th.5
-
21
-
-
11744368324
-
-
note
-
The AFM images were taken on a Topometrix TMX 2010 Discoverer system. Most measurements were made using silicon nitride pyramidal tips on cantilevers of spring constant k ranging between 0.5 and 0.06 N/m. Films were transferred to solid supports (freshly cleaved mica) by the Langmuir-Blodgett technique at 5 °C and examined at room temperature.
-
-
-
-
22
-
-
11744340366
-
-
note
-
Assuming a pseudo c-centered rectangular cell, structure factor calculations were performed for the crystalline bilayer that yielded Bragg rod widths compatible with the experimental data.
-
-
-
-
23
-
-
11744365894
-
-
note
-
Refined models of the monolayer and bilayer structures will be presented in a forthcoming publication.
-
-
-
-
24
-
-
0017284974
-
-
Craven, B. M. Nature 1976, 260, 727.
-
(1976)
Nature
, vol.260
, pp. 727
-
-
Craven, B.M.1
-
25
-
-
0041082482
-
-
Li, T.; Massey, I. J.; Swenson, D. C.; Duax, W. L.; Djerassi, C. J. Org. Chem. 1983, 48, 48.
-
(1983)
J. Org. Chem.
, vol.48
, pp. 48
-
-
Li, T.1
Massey, I.J.2
Swenson, D.C.3
Duax, W.L.4
Djerassi, C.5
-
26
-
-
11744283290
-
-
note
-
The transformation to the subcell may be rationalized since within a layer of the 3D crystal the long-chain axis of the molecules are all parallel and their centers of gravity lie at coordinates (x, y, z), (0.5 + x, y, z), (0.12 + x, 0.44 + y, z), (0.62 + x, 0.44+y. z), where 0.12, 0.44, and 0.62 are sufficiently close to 0, 0.5, 0.5, respectively. The constructed subcell a′ ≈ 1/2(a - b), b′ ≈ 1/2(a + b) embraces a "pseudo" c-centered rectangular cell that resembles the rectangular cell of cholesterol on water, which is "pseudo" c-centered, the Bragg peaks with (h + k) odd being weak (cf. curve C, Figure 1a).
-
-
-
-
27
-
-
0029013270
-
-
Brezesinski, G.; Dietrich, A.; Struth, B.; Böhm, C.; Bouwman, W.; Kjaer, K.; Möhwald, H. Chem. Phys. Lipids 1995, 76, 145.
-
(1995)
Chem. Phys. Lipids
, vol.76
, pp. 145
-
-
Brezesinski, G.1
Dietrich, A.2
Struth, B.3
Böhm, C.4
Bouwman, W.5
Kjaer, K.6
Möhwald, H.7
|