메뉴 건너뛰기




Volumn 17, Issue 19, 1998, Pages 4121-4123

A stable three-coordinate rhodium(I) olefin complex

Author keywords

[No Author keywords available]

Indexed keywords


EID: 11644265306     PISSN: 02767333     EISSN: None     Source Type: Journal    
DOI: 10.1021/om980580x     Document Type: Article
Times cited : (100)

References (30)
  • 1
    • 1642362850 scopus 로고
    • A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
    • (1977) J. Organomet. Chem. , vol.136 , pp. 121
    • Jarvis, A.C.1    Raymond, R.D.W.2    Kemmitt, D.W.3
  • 2
    • 37049098255 scopus 로고
    • A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
    • (1980) J. Chem. Soc., Dalton Trans. , pp. 1716
    • Howden, M.E.1    Kemmitt, R.D.W.2    Schilling, M.D.3
  • 3
    • 0009737314 scopus 로고
    • A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
    • (1983) Z. Naturforsch. , vol.38 B , pp. 1332
    • Brunner, H.1    Rahman, A.F.M.M.2
  • 4
    • 0028324381 scopus 로고
    • A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
    • (1994) Tetrahedron: Asymmetry , vol.5 , pp. 561
    • Brown, J.M.1    Guiry, P.J.2    Price, D.W.3    Hursthouse, M.B.4    Karalulov, S.5
  • 6
    • 0000000845 scopus 로고    scopus 로고
    • See e.g.: Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. D, Organometallics 1997, 16, 1514. Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315.
    • (1998) Organometallics , vol.17 , pp. 1315
    • Rahim, M.1    Taylor, N.J.2    Xin, S.3    Collins, S.4
  • 7
    • 11644266697 scopus 로고    scopus 로고
    • note
    • 2). Further details of the synthesis and characterization of this and further compounds are given in the Supporting Information.
  • 8
    • 85088669507 scopus 로고    scopus 로고
    • note
    • Rhc = 11 Hz).
  • 9
    • 11644324339 scopus 로고    scopus 로고
    • note
    • 2 groups not observed.
  • 10
    • 85088668970 scopus 로고    scopus 로고
    • note
    • o). For further details, see the Supporting Information.
  • 11
    • 11644264411 scopus 로고    scopus 로고
    • If hydrogens are placed at calculated positions, the two closest allylic hydrogens are at distances of 2.79 and 2.96 Å from the rhodium atom, and the two closest xylyl hydrogens are at 3.06 and 3.13 Å
    • If hydrogens are placed at calculated positions, the two closest allylic hydrogens are at distances of 2.79 and 2.96 Å from the rhodium atom, and the two closest xylyl hydrogens are at 3.06 and 3.13 Å.
  • 12
    • 0040439292 scopus 로고
    • The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
    • (1975) J. Am. Chem. Soc. , vol.97 , pp. 3871
    • Byrne, J.W.1    Blaser, H.U.2    Osborn, J.A.3
  • 13
    • 84981906021 scopus 로고
    • The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
    • (1970) Angew. Chem., Int. Ed. Engl. , vol.9 , pp. 736
    • Bönneman, H.1
  • 14
    • 1642611043 scopus 로고
    • The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
    • (1972) J. Organomet. Chem. , vol.44
    • Nixon, J.F.1    Wilkins, B.2
  • 15
    • 11644276205 scopus 로고
    • The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
    • (1974) J. Organomet. Chem. , vol.80 , pp. 129
  • 16
    • 0038023343 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1973) Chem. Phys. , vol.2 , pp. 41
    • Baerends, E.J.1    Ellis, D.E.2    Ros, P.3
  • 17
    • 36549093268 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1988) Chem. Phys. , vol.88 , pp. 322
    • Versluis, L.1    Ziegler, T.H.2
  • 18
    • 28144440701 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1992) J. Comput Chem. , vol.99 , pp. 84
    • Te Velde, G.1    Baerends, E.J.2
  • 19
    • 84990642429 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1988) Int. J. Quantum Chem. , vol.33 , pp. 87
    • Boerrigter, P.M.1    Te Velde, G.2    Baerends, E.J.3
  • 20
    • 11644281362 scopus 로고
    • Ph.D. Thesis, Free University, Amsterdam
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1987)
    • Boerrigter, P.M.1
  • 21
    • 0344178884 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1989) J. Phys. Chem. , vol.93 , pp. 3050
    • Ziegler, T.1    Tschinke, V.2    Baerends, E.J.3    Snijders, J.G.4    Ravenek, W.5
  • 22
    • 0000216001 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1980) Can. J. Phys. , vol.58 , pp. 1200
    • Vosko, S.H.1    Wilk, L.2    Nusair, M.3
  • 23
    • 4243553426 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1988) Phys. Rev. A , vol.38 , pp. 3098
    • Becke, A.1
  • 24
    • 4043083704 scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1986) Phys. Rev. B , vol.34 , pp. 7406
    • Perdew, J.P.1
  • 25
    • 0000874560 scopus 로고    scopus 로고
    • All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
    • (1996) Organometallics , vol.15 , pp. 1713
    • Sakaki, S.1    Satoh, H.2    Shono, H.3    Ujino, Y.4
  • 26
    • 11644262636 scopus 로고    scopus 로고
    • note
    • 2).
  • 27
    • 11644266696 scopus 로고    scopus 로고
    • note
    • Several batches of crystals of 2 have been prepared, but all showed severe twinning problems. The low-quality data obtained from the best crystal confirmed the expected connectivity of the complex and showed an arrangement of the cyclooctenyl group relative to the diimine fragment similar to the calculated structure shown in Figure 2C, but the data were too poor to allow derivation of meaningful geometrical parameters.
  • 30
    • 11644271604 scopus 로고    scopus 로고
    • note
    • 2).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.