-
1
-
-
1642362850
-
-
A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
-
(1977)
J. Organomet. Chem.
, vol.136
, pp. 121
-
-
Jarvis, A.C.1
Raymond, R.D.W.2
Kemmitt, D.W.3
-
2
-
-
37049098255
-
-
A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
-
(1980)
J. Chem. Soc., Dalton Trans.
, pp. 1716
-
-
Howden, M.E.1
Kemmitt, R.D.W.2
Schilling, M.D.3
-
3
-
-
0009737314
-
-
A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
-
(1983)
Z. Naturforsch.
, vol.38 B
, pp. 1332
-
-
Brunner, H.1
Rahman, A.F.M.M.2
-
4
-
-
0028324381
-
-
A few rhodium derivatives of less hindered diiminates have been reported: Jarvis, A. C.; Raymond, R. D. W.; Kemmitt, D. W. J. Organomet. Chem. 1977, 136, 121. Howden, M. E.; Kemmitt, R. D. W.; Schilling, M. D. J. Chem. Soc., Dalton Trans. 1980, 1716. Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. 1983, 38b, 1332. See also: Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561.
-
(1994)
Tetrahedron: Asymmetry
, vol.5
, pp. 561
-
-
Brown, J.M.1
Guiry, P.J.2
Price, D.W.3
Hursthouse, M.B.4
Karalulov, S.5
-
5
-
-
0000612624
-
-
See e.g.: Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. D, Organometallics 1997, 16, 1514. Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315.
-
(1997)
Organometallics
, vol.16
, pp. 1514
-
-
Feldman, J.1
McLain, S.J.2
Parthasarathy, A.3
Marshall, W.J.4
Calabrese, J.C.5
Arthur, S.D.6
-
6
-
-
0000000845
-
-
See e.g.: Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. D, Organometallics 1997, 16, 1514. Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315.
-
(1998)
Organometallics
, vol.17
, pp. 1315
-
-
Rahim, M.1
Taylor, N.J.2
Xin, S.3
Collins, S.4
-
7
-
-
11644266697
-
-
note
-
2). Further details of the synthesis and characterization of this and further compounds are given in the Supporting Information.
-
-
-
-
8
-
-
85088669507
-
-
note
-
Rhc = 11 Hz).
-
-
-
-
9
-
-
11644324339
-
-
note
-
2 groups not observed.
-
-
-
-
10
-
-
85088668970
-
-
note
-
o). For further details, see the Supporting Information.
-
-
-
-
11
-
-
11644264411
-
-
If hydrogens are placed at calculated positions, the two closest allylic hydrogens are at distances of 2.79 and 2.96 Å from the rhodium atom, and the two closest xylyl hydrogens are at 3.06 and 3.13 Å
-
If hydrogens are placed at calculated positions, the two closest allylic hydrogens are at distances of 2.79 and 2.96 Å from the rhodium atom, and the two closest xylyl hydrogens are at 3.06 and 3.13 Å.
-
-
-
-
12
-
-
0040439292
-
-
The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
-
(1975)
J. Am. Chem. Soc.
, vol.97
, pp. 3871
-
-
Byrne, J.W.1
Blaser, H.U.2
Osborn, J.A.3
-
13
-
-
84981906021
-
-
The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
-
(1970)
Angew. Chem., Int. Ed. Engl.
, vol.9
, pp. 736
-
-
Bönneman, H.1
-
14
-
-
1642611043
-
-
The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
-
(1972)
J. Organomet. Chem.
, vol.44
-
-
Nixon, J.F.1
Wilkins, B.2
-
15
-
-
11644276205
-
-
The allyl hydride mechanism is one of the accepted mechanisms for olefin isomerization. However, only a few examples of rapid equilibration between the two structures have been reported: Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. Bönneman, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 736. Decomposition of rhodium(III) allyl hydride complexes to free olefin has also been demonstrated: Nixon, J. F.; Wilkins, B. J. Organomet. Chem. 1972, 44, C25; 1974, 80, 129.
-
(1974)
J. Organomet. Chem.
, vol.80
, pp. 129
-
-
-
16
-
-
0038023343
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1973)
Chem. Phys.
, vol.2
, pp. 41
-
-
Baerends, E.J.1
Ellis, D.E.2
Ros, P.3
-
17
-
-
36549093268
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1988)
Chem. Phys.
, vol.88
, pp. 322
-
-
Versluis, L.1
Ziegler, T.H.2
-
18
-
-
28144440701
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1992)
J. Comput Chem.
, vol.99
, pp. 84
-
-
Te Velde, G.1
Baerends, E.J.2
-
19
-
-
84990642429
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1988)
Int. J. Quantum Chem.
, vol.33
, pp. 87
-
-
Boerrigter, P.M.1
Te Velde, G.2
Baerends, E.J.3
-
20
-
-
11644281362
-
-
Ph.D. Thesis, Free University, Amsterdam
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1987)
-
-
Boerrigter, P.M.1
-
21
-
-
0344178884
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 3050
-
-
Ziegler, T.1
Tschinke, V.2
Baerends, E.J.3
Snijders, J.G.4
Ravenek, W.5
-
22
-
-
0000216001
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1980)
Can. J. Phys.
, vol.58
, pp. 1200
-
-
Vosko, S.H.1
Wilk, L.2
Nusair, M.3
-
23
-
-
4243553426
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3098
-
-
Becke, A.1
-
24
-
-
4043083704
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1986)
Phys. Rev. B
, vol.34
, pp. 7406
-
-
Perdew, J.P.1
-
25
-
-
0000874560
-
-
All calculations were carried out with the program ADF (Baerends, E. J.; Ellis. D. E.; Ros, P. Chem. Phys. 1973, 2, 41. Versluis, L.; Ziegler, T. H. Chem. Phys. 1988, 88, 322. te Velde, G.; Baerends, E. J. J. Comput Chem. 1992, 99, 84. Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988,33, 87) using frozen cores; calculations on the Ir system were quasi-relativistic (Boerrigter, P. M. Ph.D. Thesis, Free University, Amsterdam, 1987. Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989. 93, 3050). The basis set employed was DZ+P on H, C, and N and a valence basis of 3 s, 3 p, and 1 p functions on the metal atoms. The VWN exchange-correlation potential (Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200) was used in combination with Becke-Perdew nonlocal corrections (Becke, A. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 34, 7406, 8822). A spin-restricted formalism was used throughout. Geometries were optimized without any symmetry restrictions. Reductive elimination from palladium(II) and platinum(II) allyl hydrides has been studied computationally: Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
-
(1996)
Organometallics
, vol.15
, pp. 1713
-
-
Sakaki, S.1
Satoh, H.2
Shono, H.3
Ujino, Y.4
-
26
-
-
11644262636
-
-
note
-
2).
-
-
-
-
27
-
-
11644266696
-
-
note
-
Several batches of crystals of 2 have been prepared, but all showed severe twinning problems. The low-quality data obtained from the best crystal confirmed the expected connectivity of the complex and showed an arrangement of the cyclooctenyl group relative to the diimine fragment similar to the calculated structure shown in Figure 2C, but the data were too poor to allow derivation of meaningful geometrical parameters.
-
-
-
-
29
-
-
0030971709
-
-
Alvarado, Y.; Boutry, O.; Gutiérrez, E.; Monge, A.; Nicasio, M. C.; Poveda, M. L.; Pérez, P. J.; Bianchini, C.; Carmona, E. Chem. Eur. J. 1997, 3, 860.
-
(1997)
Chem. Eur. J.
, vol.3
, pp. 860
-
-
Alvarado, Y.1
Boutry, O.2
Gutiérrez, E.3
Monge, A.4
Nicasio, M.C.5
Poveda, M.L.6
Pérez, P.J.7
Bianchini, C.8
Carmona, E.9
-
30
-
-
11644271604
-
-
note
-
2).
-
-
-
|