-
1
-
-
84972038069
-
The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy Part II: Numerical analysis
-
J. F. BLOWEY AND C. M. ELLIOTT, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy Part II: Numerical analysis, European J. Appl. Math., 3 (1992), pp. 147-179.
-
(1992)
European J. Appl. Math.
, vol.3
, pp. 147-179
-
-
Blowey, J.F.1
Elliott, C.M.2
-
2
-
-
0032669422
-
Computer modelling of type II superconductors in applications
-
G. BARNES, M. MCCULLOCH, AND D. DEW-HUGHES, Computer modelling of type II superconductors in applications, Supercond. Sci. Technol., 12 (1999), pp. 518-522.
-
(1999)
Supercond. Sci. Technol.
, vol.12
, pp. 518-522
-
-
Barnes, G.1
Mcculloch, M.2
Dew-Hughes, D.3
-
3
-
-
0033889253
-
Finite difference modelling of bulk high temperature superconducting cylindrical hysteresis machines
-
G. BARNES, M. MCCULLOCH, AND D. DEW-HUGHES, Finite difference modelling of bulk high temperature superconducting cylindrical hysteresis machines, Supercond. Sci. Technol., 13 (2000), pp. 229-236.
-
(2000)
Supercond. Sci. Technol.
, vol.13
, pp. 229-236
-
-
Barnes, G.1
Mcculloch, M.2
Dew-Hughes, D.3
-
4
-
-
0029393189
-
A mean-field model of superconducting vortices in three dimensions
-
S. J. CHAPMAN, A mean-field model of superconducting vortices in three dimensions, SIAM J. Appl. Math., 55 (1995), pp. 1259-1274.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 1259-1274
-
-
Chapman, S.J.1
-
5
-
-
0003725569
-
-
North-Holland, Amsterdam
-
R. GLOWINSKI, J. L. LIONS, AND R. TRÉMOLIÈRES, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1976.
-
(1976)
Numerical Analysis of Variational Inequalities
-
-
Glowinski, R.1
Lions, J.L.2
Trémolières, R.3
-
6
-
-
0000637294
-
Approximation of infinite boundary condition and its application to finite element methods
-
H. HAN AND X. Wu, Approximation of infinite boundary condition and its application to finite element methods, J. Comput. Math., 3 (1985), pp. 179-192.
-
(1985)
J. Comput. Math.
, vol.3
, pp. 179-192
-
-
Han, H.1
Wu, X.2
-
7
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
P. L. LIONS AND B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), pp. 964-979.
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, pp. 964-979
-
-
Lions, P.L.1
Mercier, B.2
-
8
-
-
0034373609
-
A posteriori error estimates for variable timestep discretizations of nonlinear evolution equations
-
R. H. NOCHETTO, G. SAVARÉ, AND C. VERDI, A posteriori error estimates for variable timestep discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53 (2000), pp. 525-589.
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 525-589
-
-
Nochetto, R.H.1
Savaré, G.2
Verdi, C.3
-
9
-
-
0031358611
-
Analysis of critical state problems in type-II superconductivity
-
L. PRIGOZHIN, Analysis of critical state problems in type-II superconductivity, IEEE Trans. on Appl. Supercond., 7 (1997), pp. 3866-3873.
-
(1997)
IEEE Trans. on Appl. Supercond.
, vol.7
, pp. 3866-3873
-
-
Prigozhin, L.1
-
10
-
-
0030488765
-
On the Bean critical state model in superconductivity
-
L. PRIGOZHIN, On the Bean critical state model in superconductivity, European J. Appl. Math., 7 (1996), pp. 237-247.
-
(1996)
European J. Appl. Math.
, vol.7
, pp. 237-247
-
-
Prigozhin, L.1
-
11
-
-
0030295529
-
The Bean model in superconductivity: Variational formulation and numerical solution
-
L. PRIGOZHIN, The Bean model in superconductivity: Variational formulation and numerical solution, J. Comput. Phys., 129 (1996), pp. 190-200.
-
(1996)
J. Comput. Phys.
, vol.129
, pp. 190-200
-
-
Prigozhin, L.1
-
12
-
-
0000048673
-
A generalized minimal residual algorithm for solving nonsymmetric linear systems
-
Y. SAAD AND M. H. SCHULTZ, A generalized minimal residual algorithm for solving nonsymmetric linear systems, J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
-
(1986)
J. Sci. Statist. Comput.
, vol.7
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.H.2
|