-
2
-
-
84942222028
-
The zeroset of a solution of a parabolic equation
-
Angenent S. The zeroset of a solution of a parabolic equation. J. Reine Angew. Math. 390 (1988) 79-96
-
(1988)
J. Reine Angew. Math.
, vol.390
, pp. 79-96
-
-
Angenent, S.1
-
3
-
-
0001590177
-
max for the solution of a semilinear heat equation
-
max for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987) 142-174
-
(1987)
J. Funct. Anal.
, vol.71
, pp. 142-174
-
-
Baras, P.1
Cohen, L.2
-
4
-
-
0000355898
-
Final time blow up profiles for semilinear parabolic equations via center mani-fold theory
-
Bebernes J., and Bricher S. Final time blow up profiles for semilinear parabolic equations via center mani-fold theory. SIAM J. Math. Anal. 23 (1992) 852-869
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 852-869
-
-
Bebernes, J.1
Bricher, S.2
-
6
-
-
0039618635
-
On the asymptotic shape of blow-up
-
Bressan A. On the asymptotic shape of blow-up. Indiana Univ. Math. J. 39 (1990) 947-960
-
(1990)
Indiana Univ. Math. J.
, vol.39
, pp. 947-960
-
-
Bressan, A.1
-
8
-
-
0032155114
-
An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations
-
Budd C.J., Collins G.J., and Galaktionov V.A. An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations. J. Comput. Appl. Math. 97 (1998) 51-80
-
(1998)
J. Comput. Appl. Math.
, vol.97
, pp. 51-80
-
-
Budd, C.J.1
Collins, G.J.2
Galaktionov, V.A.3
-
9
-
-
0000877190
-
Universality in blow-up for nonlinear heat equations
-
Bricmont J., and Kupiainen A. Universality in blow-up for nonlinear heat equations. Nonlinearity 7 (1994) 539-575
-
(1994)
Nonlinearity
, vol.7
, pp. 539-575
-
-
Bricmont, J.1
Kupiainen, A.2
-
10
-
-
0000605470
-
Numbers of zeros on invariant manifolds in reaction-diffusion equations
-
Brunovský P., and Fiedler B. Numbers of zeros on invariant manifolds in reaction-diffusion equations. Nonlinear Anal. 10 (1986) 179-193
-
(1986)
Nonlinear Anal.
, vol.10
, pp. 179-193
-
-
Brunovský, P.1
Fiedler, B.2
-
11
-
-
0000645209
-
Structural stability for time-periodic one-dimensional parabolic equa-tions
-
Chen M., Chen X.-Y., and Hale J.K. Structural stability for time-periodic one-dimensional parabolic equa-tions. J. Differential Equations 96 (1992) 355-418
-
(1992)
J. Differential Equations
, vol.96
, pp. 355-418
-
-
Chen, M.1
Chen, X.-Y.2
Hale, J.K.3
-
12
-
-
50849145650
-
Convergence asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equations
-
Chen X.-Y., and Matano H. Convergence asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equations. J. Differential Equations 78 (1989) 160-190
-
(1989)
J. Differential Equations
, vol.78
, pp. 160-190
-
-
Chen, X.-Y.1
Matano, H.2
-
13
-
-
84969732524
-
Asymptotic periodicity of positive solutions of reaction-diffusion equations on a ball
-
Chen X.-Y., and Poláčik P. Asymptotic periodicity of positive solutions of reaction-diffusion equations on a ball. J. Reine Angew. Math. 472 (1996) 17-51
-
(1996)
J. Reine Angew. Math.
, vol.472
, pp. 17-51
-
-
Chen, X.-Y.1
Poláčik, P.2
-
14
-
-
0002800188
-
The role of critical exponents in blow-up theorems: the sequel
-
Deng K., and Levine H.A. The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl. 243 (2000) 85-126
-
(2000)
J. Math. Anal. Appl.
, vol.243
, pp. 85-126
-
-
Deng, K.1
Levine, H.A.2
-
15
-
-
0022113843
-
Analysis of the early stage of thermal runaway
-
Dold J. Analysis of the early stage of thermal runaway. Quart. J. Mech. Appl. Math. 38 (1985) 361-387
-
(1985)
Quart. J. Mech. Appl. Math.
, vol.38
, pp. 361-387
-
-
Dold, J.1
-
16
-
-
0002156334
-
Zaag, Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view
-
Kammerer C.F., Merle F., and Zaag H. Zaag, Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. Math. Ann. 317 (2000) 347-387
-
(2000)
Math. Ann.
, vol.317
, pp. 347-387
-
-
Kammerer, C.F.1
Merle, F.2
Zaag, H.3
-
17
-
-
0030577735
-
Heteroclinic orbits of scalar semilinear parabolic equations
-
Fiedler B., and Rocha C. Heteroclinic orbits of scalar semilinear parabolic equations. J. Differential Equa-tions 125 (1996) 239-281
-
(1996)
J. Differential Equa-tions
, vol.125
, pp. 239-281
-
-
Fiedler, B.1
Rocha, C.2
-
18
-
-
0034387303
-
Connecting equilibria by blow-up solutions
-
Fila M., and Matano H. Connecting equilibria by blow-up solutions. Discr. Cont. Dyn. Systems 6 (2000) 155-164
-
(2000)
Discr. Cont. Dyn. Systems
, vol.6
, pp. 155-164
-
-
Fila, M.1
Matano, H.2
-
19
-
-
0042237449
-
Global solutions of a semilinear parabolic equation
-
Fila M., and Poláčik P. Global solutions of a semilinear parabolic equation. Adv. Differential Equations 4 (1999) 163-196
-
(1999)
Adv. Differential Equations
, vol.4
, pp. 163-196
-
-
Fila, M.1
Poláčik, P.2
-
21
-
-
0001336526
-
On the blowup of multidimensional semilinear heat equations
-
Filippas S., and Liu W. On the blowup of multidimensional semilinear heat equations. Ann.Inst.H.^Poincaré Anal. Non Linéaire 10 (1993) 313-344
-
(1993)
Ann.Inst.H.^Poincaré Anal. Non Linéaire
, vol.10
, pp. 313-344
-
-
Filippas, S.1
Liu, W.2
-
22
-
-
0007452217
-
Modulation theory for the blowup of vector-valued nonlinear heat equations
-
Filippas S., and Merle F. Modulation theory for the blowup of vector-valued nonlinear heat equations. J. Differential Equations 116 (1995) 119-148
-
(1995)
J. Differential Equations
, vol.116
, pp. 119-148
-
-
Filippas, S.1
Merle, F.2
-
23
-
-
0000546335
-
Blow up of positive solutions of semilinear heat equations
-
Friedman A., and McLeod J.B. Blow up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34 (1985) 425-447
-
(1985)
Indiana Univ. Math. J.
, vol.34
, pp. 425-447
-
-
Friedman, A.1
McLeod, J.B.2
-
26
-
-
44949284030
-
The space structure near a blow-up point for semi-linear heat equations: a formal approach
-
Galaktionov V.A., Herrero M.A., and Velázquez J.J.L. The space structure near a blow-up point for semi-linear heat equations: a formal approach. USSR Comp. Math. Math. Phys. 31 3 (1991) 399-411
-
(1991)
USSR Comp. Math. Math. Phys.
, vol.31
, Issue.3
, pp. 399-411
-
-
Galaktionov, V.A.1
Herrero, M.A.2
Velázquez, J.J.L.3
-
29
-
-
0010505120
-
Application of new comparison Theorems in the investigation of unbounded solutions of nonlinear parabolic equations
-
Galaktionov V.A., and Posashkov S.A. Application of new comparison Theorems in the investigation of unbounded solutions of nonlinear parabolic equations. Differential Equations 22 (1986) 116-183
-
(1986)
Differential Equations
, vol.22
, pp. 116-183
-
-
Galaktionov, V.A.1
Posashkov, S.A.2
-
30
-
-
0000470675
-
Asymptotic behavior of nonlinear parabolic equations with critical exponents. A dynamical system approach
-
Galaktionov V.A., and Vázquez J.L. Asymptotic behavior of nonlinear parabolic equations with critical exponents. A dynamical system approach. J. Funct. Anal. 100 (1991) 435-462
-
(1991)
J. Funct. Anal.
, vol.100
, pp. 435-462
-
-
Galaktionov, V.A.1
Vázquez, J.L.2
-
31
-
-
0004528391
-
Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation
-
Galaktionov V.A., and Vázquez J.L. Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation. SIAM J. Math. Anal. 24 (1993) 1254-1276
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 1254-1276
-
-
Galaktionov, V.A.1
Vázquez, J.L.2
-
32
-
-
0030147090
-
Blow-up for quasilinear heat equations described by means of nonlin-ear Hamilton-Jacobi equations
-
Galaktionov V.A., and Vázquez J.L. Blow-up for quasilinear heat equations described by means of nonlin-ear Hamilton-Jacobi equations. J. Differential Equations 127 (1996) 1-40
-
(1996)
J. Differential Equations
, vol.127
, pp. 1-40
-
-
Galaktionov, V.A.1
Vázquez, J.L.2
-
33
-
-
0031541195
-
Continuation of blow-up solutions of nonlinear heat equations in several space dimensions
-
Galaktionov V., and Vázquez J.L. Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math. 50 (1997) 1-67
-
(1997)
Comm. Pure Appl. Math.
, vol.50
, pp. 1-67
-
-
Galaktionov, V.1
Vázquez, J.L.2
-
34
-
-
0000247179
-
Some problems in the theory of quasilinear equations
-
Gelfand I.M. Some problems in the theory of quasilinear equations. Amer.Math.Soc.Transi. Vol.29 (1963) 295-381
-
(1963)
Amer.Math.Soc.Transi.
, vol.29
, pp. 295-381
-
-
Gelfand, I.M.1
-
35
-
-
34250271532
-
Symmetry and related properties by the maximum principle
-
Gidas B., Ni W.-M., and Nirenberg L. Symmetry and related properties by the maximum principle. Comm. Math. Phys. 68 (1979) 209-243
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.-M.2
Nirenberg, L.3
-
36
-
-
84990616610
-
Asymptotically self-similar blowup of semilinear heat equations
-
Giga Y., and Kohn R.V. Asymptotically self-similar blowup of semilinear heat equations. Comm. Pure Appl. Math. 38 (1985) 297-319
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.V.2
-
37
-
-
0000332576
-
Characterizing blowup using similarity variables
-
Giga Y., and Kohn R.V. Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36 (1987) 1-40
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.V.2
-
38
-
-
84990575181
-
Nondegeneracy of blow up for semilinear heat equations
-
Giga Y., and Kohn R.V. Nondegeneracy of blow up for semilinear heat equations. Comm. Pure Appl. Math. 42 (1989) 845-884
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, pp. 845-884
-
-
Giga, Y.1
Kohn, R.V.2
-
45
-
-
0001096992
-
Some results on blow up for semilinear parabolic problems
-
Herrero M.A., and Velázquez J.J.L. Some results on blow up for semilinear parabolic problems. IMA Vol.Math.Appl. Vol.47 (1993) 106-125
-
(1993)
IMA Vol.Math.Appl.
, vol.47
, pp. 106-125
-
-
Herrero, M.A.1
Velázquez, J.J.L.2
-
46
-
-
0000172301
-
Explosion de solutions des équations paraboliques semilinéaires super-critiques
-
Herrero M.A., and Velázquez J.J.L. Explosion de solutions des équations paraboliques semilinéaires super-critiques. C.R.Acad.Sci. Paris Sér. I Math. 319 (1994) 141-145
-
(1994)
C.R.Acad.Sci. Paris Sér. I Math.
, vol.319
, pp. 141-145
-
-
Herrero, M.A.1
Velázquez, J.J.L.2
-
48
-
-
84959615928
-
A nonlinear instability burst in plane parallel flow
-
Hocking L.M., Stewartson K., and Stuart J.T. A nonlinear instability burst in plane parallel flow. J. Fluid Mech. 51 (1972) 705-735
-
(1972)
J. Fluid Mech.
, vol.51
, pp. 705-735
-
-
Hocking, L.M.1
Stewartson, K.2
Stuart, J.T.3
-
49
-
-
0015557517
-
Quasilinear Dirichlet problems driven by positive sources
-
Joseph D.D., and Lundgren T.S. Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal. 49 (1973) 241-269
-
(1973)
Arch. Rat. Mech. Anal.
, vol.49
, pp. 241-269
-
-
Joseph, D.D.1
Lundgren, T.S.2
-
50
-
-
84980080195
-
On the growth of solutions of quasilinear parabolic equations
-
Kaplan S. On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math. 16 (1963) 327-330
-
(1963)
Comm. Pure Appl. Math.
, vol.16
, pp. 327-330
-
-
Kaplan, S.1
-
51
-
-
0020927931
-
Mathematical analysis of thermal runaway for spatially inhomogeneous reactions
-
Lacey A.A. Mathematical analysis of thermal runaway for spatially inhomogeneous reactions. SIAM J. Appl. Math. 43 (1983) 1350-1366
-
(1983)
SIAM J. Appl. Math.
, vol.43
, pp. 1350-1366
-
-
Lacey, A.A.1
-
52
-
-
84976111246
-
Global existence and convergence to a singular steady state for a semilinear heat equation
-
Lacey A.A., and Tzanetis D. Global existence and convergence to a singular steady state for a semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 105 (1987) 289-305
-
(1987)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.105
, pp. 289-305
-
-
Lacey, A.A.1
Tzanetis, D.2
-
53
-
-
0001259596
-
Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition
-
Lacey A.A., and Tzanetis D. Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition. IMA J. Appl. Math. 41 (1988) 207-215
-
(1988)
IMA J. Appl. Math.
, vol.41
, pp. 207-215
-
-
Lacey, A.A.1
Tzanetis, D.2
-
54
-
-
0012856953
-
Global, unbounded solutions to a parabolic equation
-
Lacey A.A., and Tzanetis D.E. Global, unbounded solutions to a parabolic equation. J. Differential Equa-tions 101 (1993) 80-102
-
(1993)
J. Differential Equa-tions
, vol.101
, pp. 80-102
-
-
Lacey, A.A.1
Tzanetis, D.E.2
-
56
-
-
0025442951
-
The role of critical exponents in blowup theorems
-
Levine H.A. The role of critical exponents in blowup theorems. SIAM Rev. 32 (1990) 262-288
-
(1990)
SIAM Rev.
, vol.32
, pp. 262-288
-
-
Levine, H.A.1
-
57
-
-
67649323251
-
Blow-up behavior for semilinear heat equations: multi-dimensional case
-
Liu W. Blow-up behavior for semilinear heat equations: multi-dimensional case. Rocky Mountain J. Math. 23 (1993) 1287-1319
-
(1993)
Rocky Mountain J. Math.
, vol.23
, pp. 1287-1319
-
-
Liu, W.1
-
59
-
-
0039246964
-
Analytic solutions of some nonlinear diffusion equations
-
Masuda K. Analytic solutions of some nonlinear diffusion equations. Math. Z. 187 (1984) 61-73
-
(1984)
Math. Z.
, vol.187
, pp. 61-73
-
-
Masuda, K.1
-
60
-
-
22844455572
-
Convergence of blow up solutions of nonlinear heat equations in the supercritical case
-
Matos J. Convergence of blow up solutions of nonlinear heat equations in the supercritical case. Proc. Roy. Soc. Edinburgh Sec. A 129 (1999) 1197-1227
-
(1999)
Proc. Roy. Soc. Edinburgh Sec. A
, vol.129
, pp. 1197-1227
-
-
Matos, J.1
-
61
-
-
67649301661
-
Self-similar blow up patterns in supercritical semilinear heat equations
-
to appear
-
J. Matos, Self-similar blow up patterns in supercritical semilinear heat equations, Comm. Appl. Anal, (to appear).
-
Comm. Appl. Anal
-
-
Matos, J.1
-
62
-
-
84990556280
-
Solution of a nonlinear heat equation with arbitrarily given blow-up points
-
Merle F. Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. 45 (1992) 263-300
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 263-300
-
-
Merle, F.1
-
64
-
-
0032338170
-
Optimal estimates for blowup rate and behavior for nonlinear heat equations
-
Merle F., and Zaag H. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math. 51 (1998) 139-196
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 139-196
-
-
Merle, F.1
Zaag, H.2
-
65
-
-
0031476888
-
Critical exponents for the blow-up of solutions with sign changes in a semi-linear parabolic equation
-
Mizoguchi N., and Yanagida E. Critical exponents for the blow-up of solutions with sign changes in a semi-linear parabolic equation. Math. Ann. 307 (1997) 663-675
-
(1997)
Math. Ann.
, vol.307
, pp. 663-675
-
-
Mizoguchi, N.1
Yanagida, E.2
-
66
-
-
0040163869
-
Critical exponents for the blowup of solutions with sign changes in a semi-linear parabolic equation II
-
Mizoguchi N., and Yanagida E. Critical exponents for the blowup of solutions with sign changes in a semi-linear parabolic equation II. J. Differential Equations 145 (1998) 295-331
-
(1998)
J. Differential Equations
, vol.145
, pp. 295-331
-
-
Mizoguchi, N.1
Yanagida, E.2
-
68
-
-
0001458289
-
The number of peaks of positive solutions of semilinear parabolic equations
-
Ni W.-M., and Sacks P. The number of peaks of positive solutions of semilinear parabolic equations. SIAM J. Math. Anal. 16 (1985) 460-471
-
(1985)
SIAM J. Math. Anal.
, vol.16
, pp. 460-471
-
-
Ni, W.-M.1
Sacks, P.2
-
69
-
-
0000956093
-
Singular behavior in nonlinear parabolic equations
-
Ni W.-M., and Sacks P. Singular behavior in nonlinear parabolic equations. Trans. Amer. Math. Soc. 287 (1985) 657-671
-
(1985)
Trans. Amer. Math. Soc.
, vol.287
, pp. 657-671
-
-
Ni, W.-M.1
Sacks, P.2
-
70
-
-
0002842122
-
On the asymptotic behavior of solutions of certain quasilinear par-abolic equations
-
Ni W.-M., Sacks P.E., and Tavantzis J. On the asymptotic behavior of solutions of certain quasilinear par-abolic equations. J. Differential Equations 54 (1984) 97-120
-
(1984)
J. Differential Equations
, vol.54
, pp. 97-120
-
-
Ni, W.-M.1
Sacks, P.E.2
Tavantzis, J.3
-
71
-
-
0038225098
-
Domains of attraction of equilibria, monotonicity^properties of convergent trajectories in parabolic systems admitting strong comparison principle
-
Poláčik P. Domains of attraction of equilibria, monotonicity^properties of convergent trajectories in parabolic systems admitting strong comparison principle. J. Reine Angew. Math. 400 (1989) 32-56
-
(1989)
J. Reine Angew. Math.
, vol.400
, pp. 32-56
-
-
Poláčik, P.1
-
72
-
-
84972538906
-
Transversal, nontransversal^intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains
-
Poláčik P. Transversal, nontransversal^intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains. Differential Integral Equations 7 (1994) 1527-1545
-
(1994)
Differential Integral Equations
, vol.7
, pp. 1527-1545
-
-
Poláčik, P.1
-
73
-
-
0003589034
-
-
(in Russian); English translation: W. de Gruyter, Berlin (1995), Nauka, Moscow
-
(in Russian); English translation: W. de Gruyter, Berlin (1995). Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., and Mikhailov A.P. Blow-up in Problems for Quasilinear Parabolic Equations (1987), Nauka, Moscow
-
(1987)
Blow-up in Problems for Quasilinear Parabolic Equations
-
-
Samarskii, A.A.1
Galaktionov, V.A.2
Kurdyumov, S.P.3
Mikhailov, A.P.4
-
74
-
-
25844516593
-
Asymptotic behaviour, blow-up^of some unbounded solutions for a semilinear heat equa-tion
-
Tzanetis D. Asymptotic behaviour, blow-up^of some unbounded solutions for a semilinear heat equa-tion. Proc. Edinburgh Math. Soc. 39 (1996) 81-96
-
(1996)
Proc. Edinburgh Math. Soc.
, vol.39
, pp. 81-96
-
-
Tzanetis, D.1
-
75
-
-
0002876557
-
Centre manifolds, normal forms and elementary bifurcations
-
Wiley, New York
-
Vanderbauwhede A. Centre manifolds, normal forms and elementary bifurcations. Dynamics Report. Ser. Dyn. Syst. Appl. Vol. 2 (1989), Wiley, New York 89-169
-
(1989)
Dynamics Report. Ser. Dyn. Syst. Appl.
, vol.2
, pp. 89-169
-
-
Vanderbauwhede, A.1
-
76
-
-
38248998988
-
Local behaviour near blow up points for semilinear parabolic equations
-
Velázquez J.J.L. Local behaviour near blow up points for semilinear parabolic equations. J. Differential Equations 106 (1993) 384-415
-
(1993)
J. Differential Equations
, vol.106
, pp. 384-415
-
-
Velázquez, J.J.L.1
-
77
-
-
84968503478
-
Classification of singularities for blowing up solutions in higher dimensions
-
Velázquez J.J.L. Classification of singularities for blowing up solutions in higher dimensions. Trans. Amer. Math. Soc. 338 (1993) 441-464
-
(1993)
Trans. Amer. Math. Soc.
, vol.338
, pp. 441-464
-
-
Velázquez, J.J.L.1
-
78
-
-
0000428167
-
Higher dimensional blow up for semilinear parabolic equations
-
Velázquez J.J.L. Higher dimensional blow up for semilinear parabolic equations. Comm. Partial Differen-tial Equations 17 (1992) 1567-1696
-
(1992)
Comm. Partial Differen-tial Equations
, vol.17
, pp. 1567-1696
-
-
Velázquez, J.J.L.1
-
79
-
-
0001494169
-
Estimates on the (N - 1)-dimensional Hausdorff measure of the blow-up set for a semi-linear heat equation
-
Velázquez J.J.L. Estimates on the (N - 1)-dimensional Hausdorff measure of the blow-up set for a semi-linear heat equation. Indiana Univ. Math. J. 42 (1993) 445-476
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 445-476
-
-
Velázquez, J.J.L.1
-
80
-
-
48549114032
-
Single-point blowup for a semilinear initial value problem
-
Weissler F. Single-point blowup for a semilinear initial value problem. J. Differential Equations 55 (1984) 204-224
-
(1984)
J. Differential Equations
, vol.55
, pp. 204-224
-
-
Weissler, F.1
|