-
1
-
-
0001816458
-
Quantitative universality for a class of nonlinear transformations
-
Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19:1978;25-52.
-
(1978)
J. Stat. Phys.
, vol.19
, pp. 25-52
-
-
Feigenbaum, M.J.1
-
2
-
-
0347447535
-
The universal metric properties of nonlinear transformations
-
Feigenbaum M.J. The universal metric properties of nonlinear transformations. J. Stat. Phys. 21:1979;669-706.
-
(1979)
J. Stat. Phys.
, vol.21
, pp. 669-706
-
-
Feigenbaum, M.J.1
-
3
-
-
48749145356
-
Universal behavior in nonlinear systems
-
Feigenbaum M.J. Universal behavior in nonlinear systems. Physica D. 7:1983;16-39.
-
(1983)
Physica D
, vol.7
, pp. 16-39
-
-
Feigenbaum, M.J.1
-
5
-
-
0003280145
-
Iterated maps on the interval as dynamical systems
-
A. Jaffe, & D. Ruelle. Boston: Birkhäuser
-
Collet P., Eckmann J.-P. Iterated maps on the interval as dynamical systems. Jaffe A., Ruelle D. Progress in physics. vol. 1:1980;Birkhäuser, Boston.
-
(1980)
Progress in Physics
, vol.1
-
-
Collet, P.1
Eckmann, J.-P.2
-
6
-
-
0012647822
-
Scaling property of period- n -tupling sequences in one-dimensional mappings
-
Zeng W.-Z., Hao B.-L., Wang G.-R., Chen S.-G. Scaling property of period- n -tupling sequences in one-dimensional mappings Commun. Theor. Phys. 3:1984;283-295.
-
(1984)
Commun. Theor. Phys.
, vol.3
, pp. 283-295
-
-
Zeng, W.-Z.1
Hao, B.-L.2
Wang, G.-R.3
Chen, S.-G.4
-
7
-
-
0000760846
-
Universality behaviors and fractal dimensions associated with M -furcations
-
Chang S.-J., McCown J. Universality behaviors and fractal dimensions associated with. M -furcations Phys. Rev. A. 31:1985;3791-3801.
-
(1985)
Phys. Rev. A
, vol.31
, pp. 3791-3801
-
-
Chang, S.-J.1
Mccown, J.2
-
8
-
-
0000651439
-
First return maps as a unified renormalization scheme for dynamical systems
-
Procaccia I., Thomae S., Tresser C. First return maps as a unified renormalization scheme for dynamical systems. Phys. Rev. A. 35:1987;1884-1900.
-
(1987)
Phys. Rev. A
, vol.35
, pp. 1884-1900
-
-
Procaccia, I.1
Thomae, S.2
Tresser, C.3
-
9
-
-
84966250718
-
A computer-assisted proof of the Feigenbaum conjectures
-
Lanford O.E. III A computer-assisted proof of the Feigenbaum conjectures. Bull. Am. Math. Soc. 6:1982;427-434.
-
(1982)
Bull. Am. Math. Soc.
, vol.6
, pp. 427-434
-
-
Lanford III, O.E.1
-
11
-
-
34250107864
-
A complete proof of the Feigenbaum conjectures
-
Eckmann J.-P., Wittwer P. A complete proof of the Feigenbaum conjectures. J. Stat. Phys. 46:1987;455-475.
-
(1987)
J. Stat. Phys.
, vol.46
, pp. 455-475
-
-
Eckmann, J.-P.1
Wittwer, P.2
-
12
-
-
0034349552
-
Existence and properties of p -tupling fixed points
-
Epstein H. Existence and properties of. p -tupling fixed points Commun. Math. Phys. 215:2000;443-476.
-
(2000)
Commun. Math. Phys.
, vol.215
, pp. 443-476
-
-
Epstein, H.1
-
13
-
-
0000876909
-
Some flesh on the skeleton: The bifurcation structure of bimodal maps
-
MacKay R.S., Tresser C. Some flesh on the skeleton: the bifurcation structure of bimodal maps. Physica D. 27:1987;412-422.
-
(1987)
Physica D
, vol.27
, pp. 412-422
-
-
Mackay, R.S.1
Tresser, C.2
-
14
-
-
84956235619
-
Period doubling for bimodal maps: A horseshoe for a renormalisation operator
-
MacKay R.S., van Zeijts J.B.J. Period doubling for bimodal maps: a horseshoe for a renormalisation operator. Nonlinearity. 1:1988;253-277.
-
(1988)
Nonlinearity
, vol.1
, pp. 253-277
-
-
Mackay, R.S.1
Van Zeijts, J.B.J.2
-
15
-
-
0039262097
-
Explicit renormalisation in piecewise linear bimodal maps
-
Veitch D., Glendinning P. Explicit renormalisation in piecewise linear bimodal maps. Physica D. 44:1990;149-167.
-
(1990)
Physica D
, vol.44
, pp. 149-167
-
-
Veitch, D.1
Glendinning, P.2
-
16
-
-
0041520366
-
0 bimodal maps
-
0 bimodal maps Physica D. 71:1994;269-284.
-
(1994)
Physica D
, vol.71
, pp. 269-284
-
-
Veitch, D.1
-
17
-
-
0002500575
-
A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos
-
Kuznetsov A.P., Kuznetsov S.P., Sataev I.R. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 109:1997;91-112.
-
(1997)
Physica D
, vol.109
, pp. 91-112
-
-
Kuznetsov, A.P.1
Kuznetsov, S.P.2
Sataev, I.R.3
-
18
-
-
0034349987
-
The generalized Milnor-Thurston conjecture and equal topological entropy class in symbolic dynamics of order topological space of three letters
-
Peng S.-L., Zhang X.-S. The generalized Milnor-Thurston conjecture and equal topological entropy class in symbolic dynamics of order topological space of three letters. Commun. Math. Phys. 213:2000;381-411.
-
(2000)
Commun. Math. Phys.
, vol.213
, pp. 381-411
-
-
Peng, S.-L.1
Zhang, X.-S.2
-
19
-
-
0041734310
-
Dual star products and metric universality in symbolic dynamics of three letters
-
Peng S.-L., Zhang X.-S., Cao K.-F. Dual star products and metric universality in symbolic dynamics of three letters. Phys. Lett. A. 246:1998;87-96.
-
(1998)
Phys. Lett. A
, vol.246
, pp. 87-96
-
-
Peng, S.-L.1
Zhang, X.-S.2
Cao, K.-F.3
-
20
-
-
0000172195
-
Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps
-
Cao K.-F., Peng S.-L. Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps. Phys. Rev. E. 60:1999;2745-2760.
-
(1999)
Phys. Rev. E
, vol.60
, pp. 2745-2760
-
-
Cao, K.-F.1
Peng, S.-L.2
-
21
-
-
0000455199
-
Iteration of endomorphisms on the real axis and representation of numbers
-
Derrida B., Gervois A., Pomeau Y. Iteration of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincaré A. 29:1978;305-356.
-
(1978)
Ann. Inst. Henri Poincaré A
, vol.29
, pp. 305-356
-
-
Derrida, B.1
Gervois, A.2
Pomeau, Y.3
-
22
-
-
0015858113
-
On finite limit sets for transformations on the unit interval
-
Metropolis N., Stein M.L., Stein P.R. On finite limit sets for transformations on the unit interval. J. Comb. Theory A. 15:1973;25-44.
-
(1973)
J. Comb. Theory A
, vol.15
, pp. 25-44
-
-
Metropolis, N.1
Stein, M.L.2
Stein, P.R.3
-
23
-
-
0012643993
-
Applied symbolic dynamics and chaos
-
Singapore: World Scientific
-
Hao B.-L., Zheng W.-M. Applied symbolic dynamics and chaos. Directions in chaos. vol. 7:1998;World Scientific, Singapore.
-
(1998)
Directions in Chaos
, vol.7
-
-
Hao, B.-L.1
Zheng, W.-M.2
-
24
-
-
0013510238
-
Period doubling in maps with a maximum of order z
-
van der Weele J.P., Capel H.W., Kluiving R. Period doubling in maps with a maximum of order. z Physica A. 145:1987;425-460.
-
(1987)
Physica A
, vol.145
, pp. 425-460
-
-
Van Der Weele, J.P.1
Capel, H.W.2
Kluiving, R.3
-
25
-
-
0032008442
-
Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations
-
Briggs K.M., Dixon T.W., Szekeres G. Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations. Int. J. Bifur. Chaos. 8:1998;347-357.
-
(1998)
Int. J. Bifur. Chaos
, vol.8
, pp. 347-357
-
-
Briggs, K.M.1
Dixon, T.W.2
Szekeres, G.3
-
26
-
-
0013554362
-
Universal vector scaling in one-dimensional maps
-
Fraser S., Kapral R. Universal vector scaling in one-dimensional maps. Phys. Rev. A. 30:1984;1017-1025.
-
(1984)
Phys. Rev. A
, vol.30
, pp. 1017-1025
-
-
Fraser, S.1
Kapral, R.2
-
27
-
-
0000277257
-
Iterative properties of a one-dimensional quartic map: Critical lines and tricritical behavior
-
Chang S.-J., Wortis M., Wright J.A. Iterative properties of a one-dimensional quartic map: critical lines and tricritical behavior. Phys. Rev. A. 24:1981;2669-2684.
-
(1981)
Phys. Rev. A
, vol.24
, pp. 2669-2684
-
-
Chang, S.-J.1
Wortis, M.2
Wright, J.A.3
-
29
-
-
0346578272
-
Two-parameter study of transition to chaos in Chua's circuit: Renormalization group, universality and scaling
-
Kuznetsov A.P., Kuznetsov S.P., Sataev I.R., Chua L.O. Two-parameter study of transition to chaos in Chua's circuit: renormalization group, universality and scaling. Int. J. Bifur. Chaos. 3:1993;943-962.
-
(1993)
Int. J. Bifur. Chaos
, vol.3
, pp. 943-962
-
-
Kuznetsov, A.P.1
Kuznetsov, S.P.2
Sataev, I.R.3
Chua, L.O.4
-
30
-
-
0013479360
-
Subharmonic bifurcation in the sine map: An infinite hierarchy of cusp bistabilities
-
Schell M., Fraser S., Kapral R. Subharmonic bifurcation in the sine map: an infinite hierarchy of cusp bistabilities. Phys. Rev. A. 28:1983;373-378.
-
(1983)
Phys. Rev. A
, vol.28
, pp. 373-378
-
-
Schell, M.1
Fraser, S.2
Kapral, R.3
|