-
3
-
-
0027697872
-
Numerical Simulation of Convection/Diffusion Phase Change Problems-A Review
-
A.A. Samarskii, P.N. Vabishchevich, O.P. Iliev and A.G. Churbanov, Numerical Simulation of Convection/Diffusion Phase Change Problems-A Review, Int. J. Heat Mass Transfer, 36, 17, 4095-4106 (1993).
-
(1993)
Int. J. Heat Mass Transfer
, vol.36
, Issue.17
, pp. 4095-4106
-
-
Samarskii, A.A.1
Vabishchevich, P.N.2
Iliev, O.P.3
Churbanov, A.G.4
-
4
-
-
0022112368
-
Coupled Integral Equation Approach for Solving Melting or Solidification
-
J. Menning and M.N. Özışık, Coupled Integral Equation Approach for Solving Melting or Solidification, Int. J. Heat Mass Transfer, 28, 8, 1481-1485 (1985).
-
(1985)
Int. J. Heat Mass Transfer
, vol.28
, Issue.8
, pp. 1481-1485
-
-
Menning, J.1
Özışık, M.N.2
-
5
-
-
0038641599
-
A Front Tracking Method for One-Dimensional Moving Boundary Problems
-
G. Marshall, A Front Tracking Method for One-Dimensional Moving Boundary Problems, SIAM J. Sci. Stat. Comput,, 7, 1, 252-263 (1986).
-
(1986)
SIAM J. Sci. Stat. Comput
, vol.7
, Issue.1
, pp. 252-263
-
-
Marshall, G.1
-
6
-
-
0000913728
-
A Comparative Study of Numerical Methods for Moving Boundary Problems
-
R.M. Furzeland, A Comparative Study of Numerical Methods for Moving Boundary Problems, J. Inst. Maths. Applies., 26, 411-429 (1980).
-
(1980)
J. Inst. Maths. Applies
, vol.26
, pp. 411-429
-
-
Furzeland, R.M.1
-
7
-
-
0001426236
-
A Nodal Integral Approach to the Numerical Solution of Partial Differential Equations
-
American Nuclear Society, LaGrange Park, IL
-
Y.Y. Azmy and J.J. Doming, A Nodal Integral Approach to the Numerical Solution of Partial Differential Equations, in Advances in Reactor Computations, volume 2, pages 893-909. American Nuclear Society, LaGrange Park, IL, 1983.
-
(1983)
Advances in Reactor Computations
, vol.2
, pp. 893-909
-
-
Azmy, Y.Y.1
Doming, J.J.2
-
8
-
-
0024135230
-
Time-Dependent Nodal Integral Method for the Investigation of Bifurcation and Nonlinear Phenomena in Fluid Flow and Natural Convection
-
G.L. Wilson, R.A. Rydin, and Y.Y. Azmy, Time-Dependent Nodal Integral Method for the Investigation of Bifurcation and Nonlinear Phenomena in Fluid Flow and Natural Convection, NucL Sei. Eng. 100, 414-425 (1988).
-
(1988)
Nucl Sei. Eng
, vol.100
, pp. 414-425
-
-
Wilson, G.L.1
Rydin, R.A.2
Azmy, Y.Y.3
-
9
-
-
0024051010
-
A Comparison of Two Efficient Nonlinear Heat Conduction Methodologies Using a Two-Dimensional Time-Dependent Benchmark Problem
-
G.L. Wilson and R.A. Rydin, A Comparison of Two Efficient Nonlinear Heat Conduction Methodologies Using a Two-Dimensional Time-Dependent Benchmark Problem, Nuclear Technology, 82, 94-105 (1988).
-
(1988)
Nuclear Technology
, vol.82
, pp. 94-105
-
-
Wilson, G.L.1
Rydin, R.A.2
-
10
-
-
0001720158
-
A General Family of Nodal Schemes
-
J.P. Hennart, A General Family of Nodal Schemes, SIAM J. Sci. Stat. Comp., 7, 1, 264-287 (1986).
-
(1986)
SIAM J. Sci. Stat. Comp
, vol.7
, Issue.1
, pp. 264-287
-
-
Hennart, J.P.1
-
11
-
-
0001050240
-
A Nodal Integral Method for the Convection-Diffusion Heat Equation
-
E.P.E. Michael, J.J. Doming, E.M. Gelbard and Rizwan-uddin, A Nodal Integral Method for the Convection-Diffusion Heat Equation, Trans. Am. NucL Soc 69, 239-241 (1993).
-
(1993)
Trans. Am. Nucl Soc
, vol.69
, pp. 239-241
-
-
Michael, E.P.E.1
Doming, J.J.2
Gelbardand Rizwan-Uddin, E.M.3
-
12
-
-
0031095086
-
A Second Order Space and Time Nodal Method for the One-Dimensional Convection Diffusion Equation
-
Rizwan-uddin, A Second Order Space and Time Nodal Method for the One-Dimensional Convection Diffusion Equation, Comp. & Fluids, 26, 3, 233-247 (1997).
-
(1997)
Comp. & Fluids
, vol.26
, Issue.3
, pp. 233-247
-
-
Rizwan-Uddin1
-
13
-
-
0000765322
-
An Improved Coarse-Mesh nodal Integral Method for Partial Differential Equations
-
Rizwan-uddin, An Improved Coarse-Mesh nodal Integral Method for Partial Differential Equations, Num. Methods for Partial Differential Equations 13, 113-145 (1997).
-
(1997)
Num. Methods for Partial Differential Equations
, vol.13
, pp. 113-145
-
-
Rizwan-Uddin1
|