-
1
-
-
0009325527
-
Group actions on non-Archimedean trees
-
from: "Arboreal group theory (Berkeley, CA)", Springer, New York
-
Hyman Bass, Group actions on non-Archimedean trees, from: "Arboreal group theory (Berkeley, CA, 1988)", Math. Sci. Res. Inst. Publ. 19, Springer, New York (1991) 69-131
-
(1988)
Math. Sci. Res. Inst. Publ.
, vol.19
, pp. 69-131
-
-
Bass, H.1
-
2
-
-
85008745312
-
Residually free groups
-
Benjamin Baumslag, Residually free groups, Proc. London Math. Soc. 17 (1967) 402-418
-
(1967)
Proc. London Math. Soc.
, vol.17
, pp. 402-418
-
-
Baumslag, B.1
-
3
-
-
0001231327
-
On generalised free products
-
Gilbert Baumslag, On generalised free products, Math. Z. 78 (1962) 423-438
-
(1962)
Math. Z.
, vol.78
, pp. 423-438
-
-
Baumslag, G.1
-
4
-
-
0001103575
-
Stable actions of groups on real trees
-
Mladen Bestvina, Mark Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287-321
-
(1995)
Invent. Math.
, vol.121
, pp. 287-321
-
-
Bestvina, M.1
Feighn, M.2
-
6
-
-
0003340443
-
Cohomology of groups
-
Springer-Verlag, New York
-
Kenneth S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer-Verlag, New York (1982)
-
(1982)
Graduate Texts in Mathematics
, vol.87
-
-
Brown, K.S.1
-
7
-
-
84859270983
-
Limit groups as limits of free groups: Compactifying the set of free groups
-
to appear
-
Christophe Champetier, Vincent Guirardel, Limit groups as limits of free groups: compactifying the set of free groups, Israel J. Math. (to appear) http://hal.ccsd.cnrs.fr/view/ccsd-00000980/fr
-
Israel J. Math.
-
-
Champetier, C.1
Guirardel, V.2
-
8
-
-
11344290441
-
Nontrivial group actions on Λ -trees
-
I M Chiswell, Nontrivial group actions on Λ -trees, Bull. London Math. Soc. 24 (1992) 277-280
-
(1992)
Bull. London Math. Soc.
, vol.24
, pp. 277-280
-
-
Chiswell, I.M.1
-
9
-
-
11344253140
-
Harrison's theorem for Λ -trees
-
I M Chiswell, Harrison's theorem for Λ -trees, Quart. J. Math. Oxford 45 (1994) 1-12
-
(1994)
Quart. J. Math. Oxford
, vol.45
, pp. 1-12
-
-
Chiswell, I.M.1
-
10
-
-
11344257912
-
Introduction to Λ -trees
-
from: "Semigroups, formal languages and groups (York)", Kluwer
-
I M Chiswell, Introduction to Λ -trees, from: "Semigroups, formal languages and groups (York, 1993)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 466, Kluwer (1995) 255-293
-
(1993)
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
, vol.466
, pp. 255-293
-
-
Chiswell, I.M.1
-
11
-
-
2442623168
-
-
World Scientific Publishing Co. Inc., River Edge, NJ
-
Ian Chiswell, Introduction to Λ -trees, World Scientific Publishing Co. Inc., River Edge, NJ (2001)
-
(2001)
Introduction to Λ -Trees
-
-
Chiswell, I.1
-
12
-
-
4243079872
-
Combination of convergence groups
-
François Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933-963
-
(2003)
Geom. Topol.
, vol.7
, pp. 933-963
-
-
Dahmani, F.1
-
13
-
-
51249163293
-
Pseudogroups of isometries of ℝ and Rips' theorem on free actions on ℝ-trees
-
D Gaboriau, G Levitt, F Paulin, Pseudogroups of isometries of ℝ and Rips' theorem on free actions on ℝ-trees, Israel J. Math. 87 (1994) 403-428
-
(1994)
Israel J. Math.
, vol.87
, pp. 403-428
-
-
Gaboriau, D.1
Levitt, G.2
Paulin, F.3
-
14
-
-
11344264943
-
-
from: "Group theory (Granville, OH)", World Sci. Publishing, River Edge, NJ
-
Anthony M Gaglione, Dennis Spellman, Every "universally free" group is tree-free, from: "Group theory (Granville, OH, 1992)", World Sci. Publishing, River Edge, NJ (1993) 149-154
-
(1992)
Every "Universally Free" Group is Tree-Free
, pp. 149-154
-
-
Gaglione, A.M.1
Spellman, D.2
-
15
-
-
11344266004
-
Does Lyndon's length function imply the universal theory of free groups?
-
from: "The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY)", Amer. Math. Soc., Providence, RI
-
Anthony M Gaglione, Dennis Spellman, Does Lyndon's length function imply the universal theory of free groups?, from: "The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992)", Contemp. Math. 169, Amer. Math. Soc., Providence, RI (1994) 277-281
-
(1992)
Contemp. Math.
, vol.169
, pp. 277-281
-
-
Gaglione, A.M.1
Spellman, D.2
-
16
-
-
11344292360
-
-
Ph.D. thesis, Hebrew University, Jerusalem
-
Shalom Gross, Group actions on Λ -trees, Ph.D. thesis, Hebrew University, Jerusalem (1998)
-
(1998)
Group Actions on Λ -Trees
-
-
Gross, S.1
-
18
-
-
84968481059
-
Real length functions in groups
-
Nancy Harrison, Real length functions in groups, Trans. Amer. Math. Soc. 174 (1972) 77-106
-
(1972)
Trans. Amer. Math. Soc.
, vol.174
, pp. 77-106
-
-
Harrison, N.1
-
20
-
-
0000461472
-
Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz
-
O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472-516
-
(1998)
J. Algebra
, vol.200
, pp. 472-516
-
-
Kharlampovich, O.1
Myasnikov, A.2
-
21
-
-
0000461473
-
Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups
-
O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517-570
-
(1998)
J. Algebra
, vol.200
, pp. 517-570
-
-
Kharlampovich, O.1
Myasnikov, A.2
-
22
-
-
7644237124
-
Value groups, residue fields and bad places of rational function fields
-
to appear
-
F-V Kuhlmann, Value groups, residue fields and bad places of rational function fields, Trans. Amer. Math. Soc. (to appear) http://math.usask.ca/ ∼fvk/Fvkpaper.html
-
Trans. Amer. Math. Soc.
-
-
Kuhlmann, F.-V.1
-
25
-
-
84975781194
-
Finitely generated subgroups of the free ℤ[t]-group on two generators
-
from: "Model theory of groups and automorphism groups (Blaubeuren)", Cambridge Univ. Press, Cambridge
-
Patrick H Pfander, Finitely generated subgroups of the free ℤ[t]-group on two generators, from: "Model theory of groups and automorphism groups (Blaubeuren, 1995)", London Math. Soc. Lecture Note Ser. 244, Cambridge Univ. Press, Cambridge (1997) 166-187
-
(1995)
London Math. Soc. Lecture Note Ser.
, vol.244
, pp. 166-187
-
-
Pfander, P.H.1
-
26
-
-
0002443947
-
∃-free groups
-
V N Remeslennikov, ∃-free groups, Siberian Math. J. 30 (1989) 998-1001, translation (1990) from Sibirsk. Mat. Zh. 30 (1989), 193-197
-
(1989)
Siberian Math. J.
, vol.30
, pp. 998-1001
-
-
Remeslennikov, V.N.1
-
27
-
-
0002443947
-
-
translation
-
V N Remeslennikov, ∃-free groups, Siberian Math. J. 30 (1989) 998-1001, translation (1990) from Sibirsk. Mat. Zh. 30 (1989), 193-197
-
(1989)
Sibirsk. Mat. Zh.
, vol.30
, pp. 193-197
-
-
-
28
-
-
0010723096
-
∃-free groups as groups with a length function
-
V N Remeslennikov, ∃-free groups as groups with a length function, Ukrainian Math. J. 44 (1992) 733-738, translation (1993) from Ukraïn. Mat. Zh. 44(6):813-818 (1992)
-
(1992)
Ukrainian Math. J.
, vol.44
, pp. 733-738
-
-
Remeslennikov, V.N.1
-
29
-
-
0010723096
-
-
translation
-
V N Remeslennikov, ∃-free groups as groups with a length function, Ukrainian Math. J. 44 (1992) 733-738, translation (1993) from Ukraïn. Mat. Zh. 44(6):813-818 (1992)
-
(1992)
Ukraïn. Mat. Zh.
, vol.44
, Issue.6
, pp. 813-818
-
-
-
30
-
-
0031533728
-
Acylindrical accessibility for groups
-
Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527-565
-
(1997)
Invent. Math.
, vol.129
, pp. 527-565
-
-
Sela, Z.1
-
32
-
-
0038569406
-
Diophantine geometry over groups. I. Makanin-Razborov diagrams
-
Zlil Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001) 31-105
-
(2001)
Publ. Math. Inst. Hautes Études Sci.
, vol.93
, pp. 31-105
-
-
Sela, Z.1
-
34
-
-
11344287754
-
Commutative Algebra
-
Reprint of the edition, Springer-Verlag, New York
-
Oscar Zariski, Pierre Samuel, Commutative algebra. Vol. II, Reprint of the 1960 edition, Graduate Texts in Mathematics 29, Springer-Verlag, New York (1975)
-
(1960)
Graduate Texts in Mathematics
, vol.2-29
-
-
Zariski, O.1
Samuel, P.2
|