-
2
-
-
0033552919
-
-
and references therein
-
R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Nature (London) 397, 121 (1999) and references therein.
-
(1999)
Nature (London)
, vol.397
, pp. 121
-
-
Friend, R.H.1
Gymer, R.W.2
Holmes, A.B.3
Burroughes, J.H.4
Marks, R.N.5
Taliani, C.6
Bradley, D.D.C.7
Dos Santos, D.A.8
Brédas, J.L.9
Lögdlund, M.10
Salaneck, W.R.11
-
3
-
-
0033699781
-
-
S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi, and T. Tsutsui, Synth. Met. 111-112, 331 (2000).
-
(2000)
Synth. Met.
, vol.111-112
, pp. 331
-
-
Naka, S.1
Okada, H.2
Onnagawa, H.3
Yamaguchi, Y.4
Tsutsui, T.5
-
9
-
-
0001100208
-
-
S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4472
-
-
Novikov, S.V.1
Dunlap, D.H.2
Kenkre, V.M.3
Parris, P.E.4
Vannikov, A.V.5
-
12
-
-
11944259693
-
-
note
-
We also considered the case when the effect of the metal surface is treated by imposing "image dipoles" behind the surface. This reduces the strength of disorder in the first two or three layers and affects the results at very high fields when the Schottky barrier comes that close to the metal surface. However, even then, the injection inhomogeneity is much more pronounced for the system with correlated disorder and the injection current is bigger again.
-
-
-
-
14
-
-
11944259414
-
-
note
-
This also allows for a much more efficient 3D numerical method, inspired by the ID treatment explained above. The 3D method uses an iteration procedure to obtain the charge distribution in the first sheet (monolayer) from an arbitrary current distribution at the exiting electrode. By inverting the result one then finds the current distribution throughout the system from the charge distribution in the first monolayer. Further details of this algorithm will be published separately.
-
-
-
-
15
-
-
11944253646
-
-
Apart from standards libraries, we used the SuperLU algorithm (http://crd.lbl.gov/~xiaoye/14/).
-
-
-
-
16
-
-
11244310251
-
-
D. Berner, E. Tutiš, W. Leo, M. Schaer, and L. Zuppiroli, Proc. SPIE 5464, 330 (2004).
-
(2004)
Proc. SPIE
, vol.5464
, pp. 330
-
-
Berner, D.1
Tutiš, E.2
Leo, W.3
Schaer, M.4
Zuppiroli, L.5
-
20
-
-
0001645380
-
-
E. Tutiš, M. N. Bussac, B. Masenelli, M. Carrard, and L. Zuppiroli, J. Appl. Phys. 89, 430 (2001).
-
(2001)
J. Appl. Phys.
, vol.89
, pp. 430
-
-
Tutiš, E.1
Bussac, M.N.2
Masenelli, B.3
Carrard, M.4
Zuppiroli, L.5
-
21
-
-
0242522900
-
-
H. Houili, E. Tutiš, H. Lutjens, M. N. Bussac, and L. Zuppiroli, Comput. Phys. Commun. 156, 108 (2003).
-
(2003)
Comput. Phys. Commun.
, vol.156
, pp. 108
-
-
Houili, H.1
Tutiš, E.2
Lutjens, H.3
Bussac, M.N.4
Zuppiroli, L.5
|