-
1
-
-
11144332247
-
The stability of difference schemes for parabolic equations
-
Russian
-
H. A. Alibekov and P. E. Sobolevskii, The stability of difference schemes for parabolic equations, Dokl. Akad. Nauk SSSR 232 (1977), no. 4, 737-740 (Russian).
-
(1977)
Dokl. Akad. Nauk SSSR
, vol.232
, Issue.4
, pp. 737-740
-
-
Alibekov, H.A.1
Sobolevskii, P.E.2
-
2
-
-
0038976615
-
Stability and convergence of high-order difference schemes of approximation for parabolic equations
-
Russian
-
H. A. Alibekov and P. E. Sobolevskii, Stability and convergence of high-order difference schemes of approximation for parabolic equations Ukrain. Mat. Zh. 31 (1979), no. 6, 627-634 (Russian ).
-
(1979)
Ukrain. Mat. Zh.
, vol.31
, Issue.6
, pp. 627-634
-
-
Alibekov, H.A.1
Sobolevskii, P.E.2
-
3
-
-
11144311679
-
A purely implicit difference scheme of second order of approximation for parabolic equations
-
SSR Ser. Fiz.-Tekhn. Khim. Geol. Nauk 1987 (Russian)
-
A. Ashyralyev, A purely implicit difference scheme of second order of approximation for parabolic equations, Izv. Akad. Nauk Turkmen. SSR Ser. Fiz.-Tekhn. Khim. Geol. Nauk 1987 (1987), no. 4, 3-13 (Russian).
-
(1987)
Izv. Akad. Nauk Turkmen
, Issue.4
, pp. 3-13
-
-
Ashyralyev, A.1
-
4
-
-
0012231681
-
Correct solvability of Padé difference schemes for parabolic equations in Hölder spaces
-
Russian
-
A. Ashyralyev, Correct solvability of Padé difference schemes for parabolic equations in Hölder spaces, Ukrain. Mat. Zh. 44 (1992), no. 11, 1466-1476 (Russian).
-
(1992)
Ukrain. Mat. Zh.
, vol.44
, Issue.11
, pp. 1466-1476
-
-
Ashyralyev, A.1
-
5
-
-
11144299349
-
On a semilinear evolution nonlocal Cauchy problem
-
Fatih University, Istanbul
-
A. Ashyralyev, H. Akca, and L. Biszewski, On a semilinear evolution nonlocal Cauchy problem, Some Problems of Applied Mathematics, Fatih University, Istanbul, 2000, pp. 29-44.
-
(2000)
Some Problems of Applied Mathematics
, pp. 29-44
-
-
Ashyralyev, A.1
Akca, H.2
Biszewski, L.3
-
6
-
-
0012276256
-
Coercive solvability of the nonlocal boundary value problem for parabolic differential equations
-
A. Ashyralyev, A. Hanalyev, and P. E. Sobolevskii, Coercive solvability of the nonlocal boundary value problem for parabolic differential equations, Abstr. Appl. Anal. 6 (2001), no. 1, 53-61.
-
(2001)
Abstr. Appl. Anal.
, vol.6
, Issue.1
, pp. 53-61
-
-
Ashyralyev, A.1
Hanalyev, A.2
Sobolevskii, P.E.3
-
7
-
-
11144275589
-
h of one dimensional difference operators with nonlocal boundary conditions
-
Fatih University, Istanbul
-
h of one dimensional difference operators with nonlocal boundary conditions, Some Problems of Applied Mathematics, Fatih University, Istanbul, 2000, pp. 45-60.
-
(2000)
Some Problems of Applied Mathematics
, pp. 45-60
-
-
Ashyralyev, A.1
Kendirli, B.2
-
8
-
-
0037828048
-
Positivity in Hölder norms of one-dimensional difference operators with nonlocal boundary conditions
-
(Sozopol, 2000), Heron Press, Sofia
-
A. Ashyralyev and B. Kendirli, Positivity in Hölder norms of one-dimensional difference operators with nonlocal boundary conditions Applications of Mathematics in Engineering and Economics (Sozopol, 2000), Heron Press, Sofia, 2001, pp. 134-137.
-
(2001)
Applications of Mathematics in Engineering and Economics
, pp. 134-137
-
-
Ashyralyev, A.1
Kendirli, B.2
-
9
-
-
0012230502
-
The theory of interpolation of linear operators and the stability of difference schemes
-
Russian
-
A. Ashyralyev and P. E. Sobolevskii, The theory of interpolation of linear operators and the stability of difference schemes, Dokl. Akad. Nauk SSSR 275 (1984), no. 6, 1289-1291 (Russian).
-
(1984)
Dokl. Akad. Nauk SSSR
, vol.275
, Issue.6
, pp. 1289-1291
-
-
Ashyralyev, A.1
Sobolevskii, P.E.2
-
10
-
-
0012234658
-
Difference schemes of a high order of accuracy for parabolic equations with variable coefficients
-
Ser. A (Russian)
-
A. Ashyralyev and P. E. Sobolevskii, Difference schemes of a high order of accuracy for parabolic equations with variable coefficients, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1988 (1988), no. 6, 3-7 (Russian).
-
(1988)
Dokl. Akad. Nauk Ukrain. SSR
, vol.1988
, Issue.6
, pp. 3-7
-
-
Ashyralyev, A.1
Sobolevskii, P.E.2
-
11
-
-
0012334519
-
Well-Posedness of Parabolic Difference Equations
-
Birkhäuser, Basel
-
A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, Operator Theory: Advances and Applications, vol. 69, Birkhäuser, Basel, 1994.
-
(1994)
Operator Theory: Advances and Applications
, vol.69
-
-
Ashyralyev, A.1
Sobolevskii, P.E.2
-
12
-
-
0012289482
-
Well-posed solvability of the Cauchy problem for difference equations of parabolic type
-
A. Ashyralyev and P. E. Sobolevskii, Well-posed solvability of the Cauchy problem for difference equations of parabolic type, Nonlinear Anal. 24 (1995), no. 2, 257-264.
-
(1995)
Nonlinear Anal.
, vol.24
, Issue.2
, pp. 257-264
-
-
Ashyralyev, A.1
Sobolevskii, P.E.2
-
13
-
-
11144254806
-
Positivity of multidimensional difference operators in the C-norm
-
Russian
-
Y. A. Smirnitskii and P. E. Sobolevskii, Positivity of multidimensional difference operators in the C-norm, Uspekhi Mat. Nauk 36 (1981), no. 4, 202-203 (Russian).
-
(1981)
Uspekhi Mat. Nauk
, vol.36
, Issue.4
, pp. 202-203
-
-
Smirnitskii, Y.A.1
Sobolevskii, P.E.2
-
14
-
-
0012321219
-
The coercive solvability of difference equations
-
Russian
-
P. E. Sobolevskii, The coercive solvability of difference equations Dokl. Akad. Nauk SSSR 201 (1971), 1063-1066 (Russian).
-
(1971)
Dokl. Akad. Nauk SSSR
, vol.201
, pp. 1063-1066
-
-
Sobolevskii, P.E.1
-
15
-
-
0037490473
-
The theory of semigroups and the stability of difference schemes
-
(Proc. School, Novosibirsk, 1975), Izdat. "Nauka" Sibirsk. Otdel., Novosibirsk
-
P. E. Sobolevskii, The theory of semigroups and the stability of difference schemes, Operator Theory in Function Spaces (Proc. School, Novosibirsk, 1975), Izdat. "Nauka" Sibirsk. Otdel., Novosibirsk, 1977, pp. 304-337.
-
(1977)
Operator Theory in Function Spaces
, pp. 304-337
-
-
Sobolevskii, P.E.1
|