-
2
-
-
0029243916
-
A neural-network-based fuzzy classifier
-
February
-
V. Uebele, S. Abe, and M. -S. Lan, "A neural-network-based fuzzy classifier," IEEE Trans. on Systems, Man, and Cybernetics, vol. 25, no. 2, pp. 353-361, February 1995.
-
(1995)
IEEE Trans. on Systems, Man, and Cybernetics
, vol.25
, Issue.2
, pp. 353-361
-
-
Uebele, V.1
Abe, S.2
Lan, M.S.3
-
3
-
-
0001703957
-
A neuro-fuzzy method to learn fuzzy classification rules from data
-
August.
-
D. Nauck and R. Kruse, "A neuro-fuzzy method to learn fuzzy classification rules from data," Fuzzy Sets and Systems, vol. 89, no. 3, pp. 277-288, August. 1997.
-
(1997)
Fuzzy Sets and Systems
, vol.89
, Issue.3
, pp. 277-288
-
-
Nauck, D.1
Kruse, R.2
-
4
-
-
0003927095
-
-
World Scientific, Singapore
-
O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific, Singapore, 2001.
-
(2001)
Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases
-
-
Cordon, O.1
Herrera, F.2
Hoffmann, F.3
Magdalena, L.4
-
5
-
-
0033704546
-
Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
-
April
-
Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement," IEEE Trans. on Fuzzy Systems, vol. 8, no. 2, pp. 212-221, April 2000.
-
(2000)
IEEE Trans. on Fuzzy Systems
, vol.8
, Issue.2
, pp. 212-221
-
-
Jin, Y.1
-
6
-
-
0035415950
-
Compact and transparent fuzzy models and classifiers through iterative complexity reduction
-
August
-
H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Trans. on Fuzzy Systems, vol. 9, no. 4, pp. 516-524, August 2001.
-
(2001)
IEEE Trans. on Fuzzy Systems
, vol.9
, Issue.4
, pp. 516-524
-
-
Roubos, H.1
Setnes, M.2
-
7
-
-
0035426682
-
Three-objective genetics-based machine learning for linguistic rule extraction
-
August
-
H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Information Sciences, vol. 136, no. 1-4, pp. 109-133, August 2001.
-
(2001)
Information Sciences
, vol.136
, Issue.1-4
, pp. 109-133
-
-
Ishibuchi, H.1
Nakashima, T.2
Murata, T.3
-
8
-
-
0346781550
-
Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
-
January
-
H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets and Systems, vol. 141, no. 1, pp. 59-88, January 2004.
-
(2004)
Fuzzy Sets and Systems
, vol.141
, Issue.1
, pp. 59-88
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
9
-
-
0037597549
-
-
Springer, Berlin
-
J. Cusillas, O. Cordon, F. Herrera, and L. Magdalena (eds.), Interpretability Issues in Fuzzy Modeling, Springer, Berlin, 2003.
-
(2003)
Interpretability Issues in Fuzzy Modeling
-
-
Cusillas, J.1
Cordon, O.2
Herrera, F.3
Magdalena, L.4
-
10
-
-
3543069982
-
-
Springer, Berlin
-
J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (eds.). Accuracy Improvement in Linguistic Fuzzy Modeling, Springer, Berlin, 2003.
-
(2003)
Accuracy Improvement in Linguistic Fuzzy Modeling
-
-
Casillas, J.1
Cordon, O.2
Herrera, F.3
Magdalena, L.4
-
11
-
-
11144333694
-
-
Springer, Berlin
-
J. Lawry, J. Shanahan, and A. Ralescu (eds.), Lecture Notes in Artificial Intelligence 2873: Modelling with Words, Springer, Berlin, 2003.
-
(2003)
Lecture Notes in Artificial Intelligence 2873: Modelling with Words
-
-
Lawry, J.1
Shanahan, J.2
Ralescu, A.3
-
12
-
-
0029678894
-
Improved use of continuous attributes in C4.5
-
March
-
J. R. Quinlan, "Improved use of continuous attributes in C4.5, " Journal of Artificial Intelligence Research, vol. 4, pp. 77-90, March 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 77-90
-
-
Quinlan, J.R.1
-
13
-
-
0032595775
-
General and efficient multisplitting of numerical attributes
-
September
-
T. Elomaa and J. Rousu, "General and efficient multisplitting of numerical attributes," Machine Learning, vol. 36, no. 3, pp. 201-244, September 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.3
, pp. 201-244
-
-
Elomaa, T.1
Rousu, J.2
-
15
-
-
0002197262
-
Distributed representation of fuzzy rules and its application to pattern classification
-
November
-
H. Ishibuchi, K. Nozaki, and H. Tanaka, "Distributed representation of fuzzy rules and its application to pattern classification." Furry Sets and Systems, vol. 52, no. 1, pp. 21-32, November 1992.
-
(1992)
Furry Sets and Systems
, vol.52
, Issue.1
, pp. 21-32
-
-
Ishibuchi, H.1
Nozaki, K.2
Tanaka, H.3
-
16
-
-
0036458314
-
Fuzzy classification using probability based rule weighting
-
May 12-17
-
J. van den Berg, U. Kaymak, and W. -M. van den Bergh, "Fuzzy classification using probability based rule weighting," Proc. of 11th IEEE International Conference on Fuzzy Systems, pp. 991-996, May 12-17, 2002.
-
(2002)
Proc. of 11th IEEE International Conference on Fuzzy Systems
, pp. 991-996
-
-
Van Den Berg, J.1
Kaymak, U.2
Van Den Bergh, W.M.3
-
17
-
-
0001639606
-
Trade-off between computation time and number of rules for fuzzy mining from quantitative data
-
October
-
T. -P. Hong, C. -S. Kuo, and S. -C. Chi, "Trade-off between computation time and number of rules for fuzzy mining from quantitative data," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 9. no. 5, pp. 587-604, October 2001.
-
(2001)
International Journal of Uncertainty, Fuzziness and Knowledge-based Systems
, vol.9
, Issue.5
, pp. 587-604
-
-
Hong, T.P.1
Kuo, C.S.2
Chi, S.-C.3
-
18
-
-
78149298630
-
Fuzzy data mining: Effect of fuzzy discretization
-
San Jose, November 29 -December 2
-
H. Ishibuchi, T. Yamamoto, and T. Nakashima, "Fuzzy data mining: Effect of fuzzy discretization," Proc. of 1st IEEE International Conference, on Data Mining, pp. 241-248. San Jose, November 29 -December 2, 2001.
-
(2001)
Proc. of 1st IEEE International Conference, on Data Mining
, pp. 241-248
-
-
Ishibuchi, H.1
Yamamoto, T.2
Nakashima, T.3
-
20
-
-
0033116171
-
SLAVE: A genetic learning system based on an iterative approach
-
April
-
A. Gonzalez and R. Perez, "SLAVE: A genetic learning system based on an iterative approach," IEEE Trans. on Fuzzy Systems, vol. 7, no. 2, pp. 176-191, April 1999.
-
(1999)
IEEE Trans. on Fuzzy Systems
, vol.7
, Issue.2
, pp. 176-191
-
-
Gonzalez, A.1
Perez, R.2
-
21
-
-
0033317446
-
MOGUL: A methodology to obtain genetic fuzzy rule-based systems under iterative rule learning approach
-
November
-
O. Cordon, M. J. del Jesus, F. Herrera, and M. Lozano, "MOGUL: A methodology to obtain genetic fuzzy rule-based systems under iterative rule learning approach." International Journal of Intelligent Systems, vol. 14, no. 11, pp. 1123-1153, November 1999.
-
(1999)
International Journal of Intelligent Systems
, vol.14
, Issue.11
, pp. 1123-1153
-
-
Cordon, O.1
Del Jesus, M.J.2
Herrera, F.3
Lozano, M.4
-
22
-
-
0035897955
-
Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
-
June
-
L. Castillo, A. Gonzalez, and R. Perez, "Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm," Fuzzy Sets and Systems, vol. 120, no. 2, pp. 309-321, June 2001.
-
(2001)
Fuzzy Sets and Systems
, vol.120
, Issue.2
, pp. 309-321
-
-
Castillo, L.1
Gonzalez, A.2
Perez, R.3
-
23
-
-
0035501966
-
Use of a fuzzy machine learning technique in the knowledge acquisition process
-
November
-
L. Castro, J. J. Castro-Schez, and J. M. Zurita, "Use of a fuzzy machine learning technique in the knowledge acquisition process," Fuzzy Sets and Systems, vol. 123, no. 3, pp. 307-320, November 2001.
-
(2001)
Fuzzy Sets and Systems
, vol.123
, Issue.3
, pp. 307-320
-
-
Castro, L.1
Castro-Schez, J.J.2
Zurita, J.M.3
-
24
-
-
0001371923
-
Fast discovery of association rules
-
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.) AAAI Press, Menlo Park
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, "Fast discovery of association rules," in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307-328, AAAI Press, Menlo Park, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
|