메뉴 건너뛰기




Volumn 1, Issue , 2004, Pages 161-166

Heuristic extraction of fuzzy classification rules using data mining techniques: An empirical study on benchmark data sets

Author keywords

[No Author keywords available]

Indexed keywords

EVOLUTIONARY OPTIMIZATION; FUZZY RULE-BASED CLASSIFICATION SYSTEMS; FUZZY RULES; HEURISTIC EXTRACTION;

EID: 11144275998     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZY.2004.1375709     Document Type: Conference Paper
Times cited : (9)

References (24)
  • 3
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • August.
    • D. Nauck and R. Kruse, "A neuro-fuzzy method to learn fuzzy classification rules from data," Fuzzy Sets and Systems, vol. 89, no. 3, pp. 277-288, August. 1997.
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 5
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • April
    • Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement," IEEE Trans. on Fuzzy Systems, vol. 8, no. 2, pp. 212-221, April 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 6
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • August
    • H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Trans. on Fuzzy Systems, vol. 9, no. 4, pp. 516-524, August 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 7
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • August
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Information Sciences, vol. 136, no. 1-4, pp. 109-133, August 2001.
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 8
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • January
    • H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets and Systems, vol. 141, no. 1, pp. 59-88, January 2004.
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 12
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • March
    • J. R. Quinlan, "Improved use of continuous attributes in C4.5, " Journal of Artificial Intelligence Research, vol. 4, pp. 77-90, March 1996.
    • (1996) Journal of Artificial Intelligence Research , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 13
    • 0032595775 scopus 로고    scopus 로고
    • General and efficient multisplitting of numerical attributes
    • September
    • T. Elomaa and J. Rousu, "General and efficient multisplitting of numerical attributes," Machine Learning, vol. 36, no. 3, pp. 201-244, September 1999.
    • (1999) Machine Learning , vol.36 , Issue.3 , pp. 201-244
    • Elomaa, T.1    Rousu, J.2
  • 15
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • November
    • H. Ishibuchi, K. Nozaki, and H. Tanaka, "Distributed representation of fuzzy rules and its application to pattern classification." Furry Sets and Systems, vol. 52, no. 1, pp. 21-32, November 1992.
    • (1992) Furry Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 20
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: A genetic learning system based on an iterative approach
    • April
    • A. Gonzalez and R. Perez, "SLAVE: A genetic learning system based on an iterative approach," IEEE Trans. on Fuzzy Systems, vol. 7, no. 2, pp. 176-191, April 1999.
    • (1999) IEEE Trans. on Fuzzy Systems , vol.7 , Issue.2 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 21
    • 0033317446 scopus 로고    scopus 로고
    • MOGUL: A methodology to obtain genetic fuzzy rule-based systems under iterative rule learning approach
    • November
    • O. Cordon, M. J. del Jesus, F. Herrera, and M. Lozano, "MOGUL: A methodology to obtain genetic fuzzy rule-based systems under iterative rule learning approach." International Journal of Intelligent Systems, vol. 14, no. 11, pp. 1123-1153, November 1999.
    • (1999) International Journal of Intelligent Systems , vol.14 , Issue.11 , pp. 1123-1153
    • Cordon, O.1    Del Jesus, M.J.2    Herrera, F.3    Lozano, M.4
  • 22
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
    • June
    • L. Castillo, A. Gonzalez, and R. Perez, "Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm," Fuzzy Sets and Systems, vol. 120, no. 2, pp. 309-321, June 2001.
    • (2001) Fuzzy Sets and Systems , vol.120 , Issue.2 , pp. 309-321
    • Castillo, L.1    Gonzalez, A.2    Perez, R.3
  • 23
    • 0035501966 scopus 로고    scopus 로고
    • Use of a fuzzy machine learning technique in the knowledge acquisition process
    • November
    • L. Castro, J. J. Castro-Schez, and J. M. Zurita, "Use of a fuzzy machine learning technique in the knowledge acquisition process," Fuzzy Sets and Systems, vol. 123, no. 3, pp. 307-320, November 2001.
    • (2001) Fuzzy Sets and Systems , vol.123 , Issue.3 , pp. 307-320
    • Castro, L.1    Castro-Schez, J.J.2    Zurita, J.M.3
  • 24
    • 0001371923 scopus 로고    scopus 로고
    • Fast discovery of association rules
    • U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.) AAAI Press, Menlo Park
    • R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, "Fast discovery of association rules," in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307-328, AAAI Press, Menlo Park, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 307-328
    • Agrawal, R.1    Mannila, H.2    Srikant, R.3    Toivonen, H.4    Verkamo, A.I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.