-
1
-
-
0010021410
-
Probabilities of large deviations for U-statistics and von Mises functionals
-
in Russian
-
A. K. Aleshkyavichene, Probabilities of large deviations for U-statistics and von Mises functionals, (Russian) Teor Veroyatnost i Primenen 35(1) (1990), 3-14 (in Russian) [Engl. transi. Theory Probab. Appl. 35(1) (1990), 1-14.
-
(1990)
Teor Veroyatnost i Primenen
, vol.35
, Issue.1
, pp. 3-14
-
-
Aleshkyavichene, A.K.1
-
2
-
-
11144292604
-
-
Engl. transi.
-
A. K. Aleshkyavichene, Probabilities of large deviations for U-statistics and von Mises functionals, (Russian) Teor Veroyatnost i Primenen 35(1) (1990), 3-14 (in Russian) [Engl. transi. Theory Probab. Appl. 35(1) (1990), 1-14.
-
(1990)
Theory Probab. Appl.
, vol.35
, Issue.1
, pp. 1-14
-
-
-
3
-
-
0001666999
-
Limit theorems for U-processes
-
M. A. Arcones and E. Gine, Limit theorems for U-processes, Ann Probab 21(3) (1993), 1494-1542.
-
(1993)
Ann Probab
, vol.21
, Issue.3
, pp. 1494-1542
-
-
Arcones, M.A.1
Gine, E.2
-
4
-
-
0001917727
-
Probability inequalities for the sum of independent random variables
-
G. Bennett, Probability inequalities for the sum of independent random variables, J Amer Statist Assoc 57 (1962), 33-45.
-
(1962)
J Amer Statist Assoc
, vol.57
, pp. 33-45
-
-
Bennett, G.1
-
5
-
-
11144293405
-
On a modification of Chebyshev's inequality and of the error formula of Laplace
-
in Russian
-
S. Bernstein, On a modification of Chebyshev's inequality and of the error formula of Laplace, Ann Sci Inst Sav Ukraine Sect Math 1 (1924), 38-49 (in Russian).
-
(1924)
Ann Sci Inst Sav Ukraine Sect Math
, vol.1
, pp. 38-49
-
-
Bernstein, S.1
-
8
-
-
84996132182
-
A new large deviation inequality for U-statistics of order 2
-
J. Bretagnolle, A new large deviation inequality for U-statistics of order 2, ESAIM Probab Statist 3 (1999), 151-162.
-
(1999)
ESAIM Probab Statist
, vol.3
, pp. 151-162
-
-
Bretagnolle, J.1
-
9
-
-
0000182415
-
A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations
-
H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann Math Statist 23 (1952), 493-507.
-
(1952)
Ann Math Statist
, vol.23
, pp. 493-507
-
-
Chernoff, H.1
-
11
-
-
0010033951
-
Generalization of a probability limit theorem of Cramer
-
W. Feller, Generalization of a probability limit theorem of Cramer, Trans Amer Math Soc 54 (1943), 361-372.
-
(1943)
Trans Amer Math Soc
, vol.54
, pp. 361-372
-
-
Feller, W.1
-
12
-
-
84879531303
-
Hidden pattern statistics
-
Automata, languages, and programming (ICALP'2001), Eds. F. Orejas et al., Springer-Verlag, New York
-
P. Flajolet, Y. Guivarc'h, W. Szpankowski, and B. Vallée, "Hidden pattern statistics," Automata, languages, and programming (ICALP'2001), Eds. F. Orejas et al., Lecture Notes in Computer Science 2076, 152-165. Springer-Verlag, New York, 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2076
, pp. 152-165
-
-
Flajolet, P.1
Guivarc'h, Y.2
Szpankowski, W.3
Vallée, B.4
-
13
-
-
0001562538
-
Proof of a conjecture of Erdös
-
combinatorial theory and its applications, Eds. P. Erdös, A. Rényi, and V. T. Sós, North-Holland, Amsterdam
-
A. Hajnal and E. Szemerédi, "Proof of a conjecture of Erdös," combinatorial theory and its applications, Vol. II, Eds. P. Erdös, A. Rényi, and V. T. Sós, Colloq Math Soc János Bolyai 4, 601-623. North-Holland, Amsterdam, 1970.
-
(1970)
Colloq Math Soc János Bolyai
, vol.2-4
, pp. 601-623
-
-
Hajnal, A.1
Szemerédi, E.2
-
14
-
-
0001744704
-
A class of statistics with asymptotically normal distribution
-
W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann Math Statist 19 (1948), 293-325.
-
(1948)
Ann Math Statist
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
15
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding, Probability inequalities for sums of bounded random variables, J Amer Statist Assoc 58 (1963), 13-30.
-
(1963)
J Amer Statist Assoc
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
16
-
-
0003063741
-
An exponential bound for the probability of nonexistence of a specified subgraph in a random graph
-
Eds. M. Karoński, J. Jaworski, and A. Ruciński, Wiley, Chichester
-
S. Janson, T. Luczak, and A. Rucíiski, "An exponential bound for the probability of nonexistence of a specified subgraph in a random graph," Random Graphs '87 (Proceedings, Poznań 1987), Eds. M. Karoński, J. Jaworski, and A. Ruciński, 73-87. Wiley, Chichester, 1990.
-
(1990)
Random Graphs '87 (Proceedings, Poznań 1987)
, pp. 73-87
-
-
Janson, S.1
Luczak, T.2
Rucíiski, A.3
-
17
-
-
0003616602
-
-
Wiley, New York
-
S. Janson, T. Luczak, and A. Ruciński, Random graphs, Wiley, New York, 2000.
-
(2000)
Random Graphs
-
-
Janson, S.1
Luczak, T.2
Ruciński, A.3
-
20
-
-
51849177724
-
Some inequalities relating to the partial sum of binomial probabilities
-
M. Okamoto, Some inequalities relating to the partial sum of binomial probabilities, Ann Inst Statist Math 10 (1958), 29-35.
-
(1958)
Ann Inst Statist Math
, vol.10
, pp. 29-35
-
-
Okamoto, M.1
-
21
-
-
84923084498
-
Equitable coloring extends Chernoff-Hoeffding bounds
-
Approximation, randomization and combinatorial optimization: Algorithms and techniques (APPROX 2001 and RANDOM 2001), Eds. M. X. Goemans et al., Springer-Verlag, New York
-
S. V. Pemmaraju, "Equitable coloring extends Chernoff-Hoeffding bounds," Approximation, randomization and combinatorial optimization: Algorithms and techniques (APPROX 2001 and RANDOM 2001), Eds. M. X. Goemans et al., Lecture Notes in Computer Science 2129, 285-296. 2129, Springer-Verlag, New York, 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2129
, pp. 285-296
-
-
Pemmaraju, S.V.1
-
22
-
-
84990662408
-
Random graphs with monochromatic triangles in every edge coloring
-
V. Rödl and A. Ruciński, Random graphs with monochromatic triangles in every edge coloring, Random Structures Algorithms 5(1) (1994), 253-270.
-
(1994)
Random Structures Algorithms
, vol.5
, Issue.1
, pp. 253-270
-
-
Rödl, V.1
Ruciński, A.2
-
23
-
-
0035595391
-
A large deviation result on the number of small subgraphs of a random graph
-
V. H. Vu, A large deviation result on the number of small subgraphs of a random graph, Combin Probab Comput 10(1) (2001), 79-94.
-
(2001)
Combin Probab Comput
, vol.10
, Issue.1
, pp. 79-94
-
-
Vu, V.H.1
|