메뉴 건너뛰기




Volumn 60, Issue 4, 2004, Pages 854-864

Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout

Author keywords

Clinical trials; Equivalence trial; Linear mixed model; Missing data; Nonignorable dropout; Pattern mixture model; Pediatric AIDS; Selection bias; Smoothing splines

Indexed keywords

RANDOM PROCESSES;

EID: 10944241763     PISSN: 0006341X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.0006-341X.2004.00240.x     Document Type: Article
Times cited : (39)

References (34)
  • 1
    • 0033858416 scopus 로고    scopus 로고
    • Modeling repeated count data subject to informative dropout
    • Albert, P. S. and Follmann, D. (2000). Modeling repeated count data subject to informative dropout. Biometrics 56, 667-677.
    • (2000) Biometrics , vol.56 , pp. 667-677
    • Albert, P.S.1    Follmann, D.2
  • 2
    • 8944262046 scopus 로고    scopus 로고
    • Randomized study of the tolerance and efficacy of high- versus low-dose zidovudine in human immunodeficiency virus-infected children with mild to moderate symptoms (ACTG 128)
    • Brady, M. T., McGrath, N., Brouwers, P., et al., for the Pediatric AIDS clinical trial. (1996). Randomized study of the tolerance and efficacy of high- versus low-dose zidovudine in human immunodeficiency virus-infected children with mild to moderate symptoms (ACTG 128). Journal of Infectious Disease 173, 1097-1106.
    • (1996) Journal of Infectious Disease , vol.173 , pp. 1097-1106
    • Brady, M.T.1    McGrath, N.2    Brouwers, P.3
  • 4
    • 0033636008 scopus 로고    scopus 로고
    • Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout
    • Daniels, M. J. and Hogan, J. W. (2000). Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout. Biometrics 56, 1241-1248.
    • (2000) Biometrics , vol.56 , pp. 1241-1248
    • Daniels, M.J.1    Hogan, J.W.2
  • 5
    • 0038600714 scopus 로고    scopus 로고
    • Bayesian analysis of covariance matrices and dynamic models for longitudinal data
    • Daniels, M. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 89, 553-566.
    • (2002) Biometrika , vol.89 , pp. 553-566
    • Daniels, M.1    Pourahmadi, M.2
  • 6
    • 0028627762 scopus 로고
    • Modeling the progression of CD4-lymphocyte count and its relationship to survival time
    • DeGruttola, V. and Tu, X. M. (1994). Modeling the progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50, 1003-1014.
    • (1994) Biometrics , vol.50 , pp. 1003-1014
    • DeGruttola, V.1    Tu, X.M.2
  • 7
    • 0024205607 scopus 로고
    • An approach to the analysis of repeated measurements
    • Diggle, P. J. (1988). An approach to the analysis of repeated measurements. Biometrics 44, 959-971.
    • (1988) Biometrics , vol.44 , pp. 959-971
    • Diggle, P.J.1
  • 8
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • Diggle, P. and Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics 43, 49-73.
    • (1994) Applied Statistics , vol.43 , pp. 49-73
    • Diggle, P.1    Kenward, M.G.2
  • 9
    • 0001216089 scopus 로고    scopus 로고
    • Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies
    • Fitzmaurice, G. M. and Laird, N. M. (2000). Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 1, 141-156.
    • (2000) Biostatistics , vol.1 , pp. 141-156
    • Fitzmaurice, G.M.1    Laird, N.M.2
  • 10
    • 0035044722 scopus 로고    scopus 로고
    • An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs
    • Fitzmaurice, G. M., Laird, N. M., and Shneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021.
    • (2001) Statistics in Medicine , vol.20 , pp. 1009-1021
    • Fitzmaurice, G.M.1    Laird, N.M.2    Shneyer, L.3
  • 11
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follman, D. and Wu, M. C. (1995). An approximate generalized linear model with random effects for informative missing data. Biometrics 51, 151-168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follman, D.1    Wu, M.C.2
  • 13
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-257
    • Hogan, J.W.1    Laird, N.M.2
  • 14
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259-272.
    • (1997) Statistics in Medicine , vol.16 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 15
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal data
    • Kenward, M. G. and Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data. Statistical Methods in Medical Research 8, 51-83.
    • (1999) Statistical Methods in Medical Research , vol.8 , pp. 51-83
    • Kenward, M.G.1    Molenberghs, G.2
  • 16
    • 0023716933 scopus 로고
    • Missing data in longitudinal studies
    • Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315.
    • (1988) Statistics in Medicine , vol.7 , pp. 305-315
    • Laird, N.M.1
  • 17
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 18
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 20
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika 81, 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 21
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 22
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little, R. J. A. and Wang, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 52, 98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 24
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.1    Rotnitzky, A.2    Zhao, L.P.3
  • 26
    • 0035102566 scopus 로고    scopus 로고
    • Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring
    • Rotnitzky, A., Scharfstein, D., Su, T. L., and Robins, J. (2001). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103-113.
    • (2001) Biometrics , vol.57 , pp. 103-113
    • Rotnitzky, A.1    Scharfstein, D.2    Su, T.L.3    Robins, J.4
  • 27
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 72, 538-543.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 28
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable nonresponse using semiparametric nonresponse models with time dependent covariates
    • Scharfstein, D., Robins, J., and Rotnitzky, A. (1999). Adjusting for nonignorable nonresponse using semiparametric nonresponse models with time dependent covariates (with discussion). Journal of the American Statistical Association 94, 1096-1146.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1096-1146
    • Scharfstein, D.1    Robins, J.2    Rotnitzky, A.3
  • 29
    • 0027092589 scopus 로고
    • Methods for the analysis of informatively censored longitudinal data
    • Schluchlter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 11, 1861-1870.
    • (1992) Statistics in Medicine , vol.11 , pp. 1861-1870
    • Schluchlter, M.D.1
  • 30
    • 0031944647 scopus 로고    scopus 로고
    • Mixed effects logistic regression models for longitudinal binary response data with informative drop-out
    • Ten Have, T. R., Kunselman, A. R., Pulkstenis, E. P., and Landis, J. R. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative drop-out. Biometrics 54, 367-383.
    • (1998) Biometrics , vol.54 , pp. 367-383
    • Ten Have, T.R.1    Kunselman, A.R.2    Pulkstenis, E.P.3    Landis, J.R.4
  • 31
    • 0023779040 scopus 로고
    • Analysing changes in the presence of informative right censoring caused by death and withdrawal
    • Wu, M. C. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. Statistics in Medicine 7, 337-346.
    • (1988) Statistics in Medicine , vol.7 , pp. 337-346
    • Wu, M.C.1    Bailey, K.2
  • 32
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • corr: V 46 p. 889
    • Wu, M. C. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model (corr: V 46 p. 889). Biometrics 45, 939-955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.2
  • 33
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.