-
1
-
-
0033561886
-
Independent factor analysis
-
H. Attias, "Independent factor analysis," Neural Computation, vol. 11, no. 4, pp. 803-851, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.4
, pp. 803-851
-
-
Attias, H.1
-
3
-
-
0002741125
-
Ensemble learning for blind source separation
-
S. Roberts and R. Everson, Eds. Cambridge University Press
-
J. Miskin and D. J. C. MacKay, "Ensemble learning for blind source separation," in Independent Component Analysis: Principles and Practice, S. Roberts and R. Everson, Eds. Cambridge University Press, 2001, pp. 209-233.
-
(2001)
Independent Component Analysis: Principles and Practice
, pp. 209-233
-
-
Miskin, J.1
MacKay, D.J.C.2
-
4
-
-
0041667094
-
ICA: Model order selection and dynamic source models
-
S. Roberts and R. Everson, Eds. Cambridge University Press
-
W. Penny, R. Everson, and S. Roberts, "ICA: model order selection and dynamic source models," in Independent Component Analysis: Principles and Practice, S. Roberts and R. Everson, Eds. Cambridge University Press, 2001, pp. 299-314.
-
(2001)
Independent Component Analysis: Principles and Practice
, pp. 299-314
-
-
Penny, W.1
Everson, R.2
Roberts, S.3
-
5
-
-
0002144623
-
Bayesian nonlinear independent component analysis by multi-layer perceptrons
-
M. Girolami, Ed. Berlin: Springer-Verlag
-
H. Lappalainen and A. Honkela, "Bayesian nonlinear independent component analysis by multi-layer perceptrons," in Advances in Independent Component Analysis, M. Girolami, Ed. Berlin: Springer-Verlag, 2000, pp. 93-121.
-
(2000)
Advances in Independent Component Analysis
, pp. 93-121
-
-
Lappalainen, H.1
Honkela, A.2
-
6
-
-
0038132747
-
An unsupervised ensemble learning method for nonlinear dynamic state-space models
-
H. Valpola and J. Karhunen, "An unsupervised ensemble learning method for nonlinear dynamic state-space models," Neural Computation, vol. 14, no. 11, pp. 2647-2692, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2647-2692
-
-
Valpola, H.1
Karhunen, J.2
-
7
-
-
0038036528
-
Nonlinear blind source separation by variational Bayesian learning
-
H. Valpola, E. Oja, A. Ilin, A. Honkela, and J. Karhunen, "Nonlinear blind source separation by variational Bayesian learning," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, no. 3, pp. 532-541, 2003.
-
(2003)
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
, vol.E86-A
, Issue.3
, pp. 532-541
-
-
Valpola, H.1
Oja, E.2
Ilin, A.3
Honkela, A.4
Karhunen, J.5
-
8
-
-
0027803368
-
Keeping neural networks simple by minimizing the description length of the weights
-
Santa Cruz, CA, USA
-
G. E. Hintlon and D. van Camp, "Keeping neural networks simple by minimizing the description length of the weights," in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory, Santa Cruz, CA, USA, 1993, pp. 5-13.
-
(1993)
Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory
, pp. 5-13
-
-
Hintlon, G.E.1
Van Camp, D.2
-
11
-
-
0001596032
-
Delayed curse of dimension for Gaussian integration
-
F. Curbera, "Delayed curse of dimension for Gaussian integration," Journal of Complexity, vol. 16, no. 2, pp. 474-506, 2000.
-
(2000)
Journal of Complexity
, vol.16
, Issue.2
, pp. 474-506
-
-
Curbera, F.1
-
12
-
-
0003712010
-
A general method for approximating non-linear transformations of probability distributions
-
Robotics Research Group, Department of Engineering Science, University of Oxford
-
S. Julier and J. K. Uhlmann, "A general method for approximating non-linear transformations of probability distributions," Robotics Research Group, Department of Engineering Science, University of Oxford, Tech. Rep., 1996.
-
(1996)
Tech. Rep.
-
-
Julier, S.1
Uhlmann, J.K.2
-
13
-
-
0003359612
-
The unscented Kalman filter
-
S. Haykin, Ed. New York: Wiley
-
E. A. Wan and R. van der Merwe, "The unscented Kalman filter," in Kalman Filtering and Neural Networks, S. Haykin, Ed. New York: Wiley, 2001, pp. 221-280.
-
(2001)
Kalman Filtering and Neural Networks
, pp. 221-280
-
-
Wan, E.A.1
Van Der Merwe, R.2
|