-
2
-
-
0003744737
-
Estimating normalizing constants and reweighing mixtures in markov chain monte carlo
-
University of Minnesota, School of Statistics
-
Geyer, C. J. (1994), Estimating Normalizing Constants and Reweighing Mixtures in Markov Chain Monte Carlo, technical report, University of Minnesota, School of Statistics.
-
(1994)
Technical Report
-
-
Geyer, C.J.1
-
3
-
-
0001301175
-
Large sample theory of empirical distributions in biased sampling models
-
Gill, R., Vardi, Y., and Wellner, J. (1988), Large Sample Theory of Empirical Distributions in Biased Sampling Models, The Annals of Statistics, 16, 1069-1112.
-
(1988)
The Annals of Statistics
, vol.16
, pp. 1069-1112
-
-
Gill, R.1
Vardi, Y.2
Wellner, J.3
-
4
-
-
0042240906
-
Some new perspectives on the method of control variates
-
eds. K.-T. Fang, F. J. Hickernell, and H. Niederreiter, New York: Springer-Verlag
-
Glynn, P. W., and Szechtman, R. (2000), Some New Perspectives on the Method of Control Variates, in Monte Carlo and Quasi-Monte Carlo Methods, eds. K.-T. Fang, F. J. Hickernell, and H. Niederreiter, New York: Springer-Verlag, pp. 27-49.
-
(2000)
Monte Carlo and Quasi-Monte Carlo Methods
, pp. 27-49
-
-
Glynn, P.W.1
Szechtman, R.2
-
6
-
-
78649424388
-
Weighted average importance sampling and defensive mixture distributions
-
Hesterberg, T. (1995), Weighted Average Importance Sampling and Defensive Mixture Distributions, Technometrics, 37, 185-194.
-
(1995)
Technometrics
, vol.37
, pp. 185-194
-
-
Hesterberg, T.1
-
7
-
-
0043173938
-
A theory of statistical models for monte carlo integration
-
Kong, A., McCullagh, P., Meng, X.-L., Nicolae, D., and Tan, Z. (2003), A Theory of Statistical Models for Monte Carlo Integration (with discussion), Journal of the Royal Statistical Society, Ser. B, 65, 585-618.
-
(2003)
Journal of the Royal Statistical Society, Ser. B
, vol.65
, pp. 585-618
-
-
Kong, A.1
McCullagh, P.2
Meng, X.-L.3
Nicolae, D.4
Tan, Z.5
-
8
-
-
21444451325
-
Simulating ratios of normalizing constants via a simple identity: A theoretical explanation
-
Meng, X.-L., and Wong, W. H. (1996), Simulating Ratios of Normalizing Constants via a Simple Identity: A Theoretical Explanation, Statistica Sinica, 6, 831-860.
-
(1996)
Statistica Sinica
, vol.6
, pp. 831-860
-
-
Meng, X.-L.1
Wong, W.H.2
-
9
-
-
21144480023
-
Asymptotics for M-estimators defined by convex minimization
-
Niemiro, W. (1992), Asymptotics for M-Estimators Defined by Convex Minimization, The Annals of Statistics, 20, 1514-1533.
-
(1992)
The Annals of Statistics
, vol.20
, pp. 1514-1533
-
-
Niemiro, W.1
-
11
-
-
0442309556
-
Safe and effective importance sampling
-
Owen, A., and Zhou, Y. (2000), Safe and Effective Importance Sampling, Journal of the American Statistical Association, 95, 135-143.
-
(2000)
Journal of the American Statistical Association
, vol.95
, pp. 135-143
-
-
Owen, A.1
Zhou, Y.2
-
12
-
-
10844233545
-
Monte carlo integration with Markov Chain
-
Johns Hopkins University, Department of Biostatistics
-
Tan, Z. (2003a), Monte Carlo Integration With Markov Chain, working paper, Johns Hopkins University, Department of Biostatistics.
-
(2003)
Working Paper
-
-
Tan, Z.1
-
13
-
-
10844233545
-
Monte carlo integration with acceptance-rejection
-
Johns Hopkins University, Department of Biostatistics
-
_ (2003b), Monte Carlo Integration With Acceptance-Rejection, working paper, Johns Hopkins University, Department of Biostatistics.
-
(2003)
Working Paper
-
-
-
15
-
-
0001520376
-
Empirical distributions in selection bias models
-
Vardi, Y (1985), Empirical Distributions in Selection Bias Models, The Annals of Statistics, 25, 178-203.
-
(1985)
The Annals of Statistics
, vol.25
, pp. 178-203
-
-
Vardi, Y.1
-
16
-
-
0029191761
-
Optimally combining sampling techniques for monte carlo rendering
-
Reading, MA: Addison-Wesley
-
Veach, E. and Guibas, L. (1995), Optimally Combining Sampling Techniques for Monte Carlo Rendering, in SIGGRAPH'95 Conference Proceedings, Reading, MA: Addison-Wesley, pp. 419-428.
-
(1995)
SIGGRAPH'95 Conference Proceedings
, pp. 419-428
-
-
Veach, E.1
Guibas, L.2
|