-
4
-
-
0039530497
-
Theory of functionals that uniquely determine asymptotic dynamics of infinite-dimensional dissipative systems
-
Chueshov, I. (1998). Theory of functionals that uniquely determine asymptotic dynamics of infinite-dimensional dissipative systems. Russian Math. Surveys 53:731-776.
-
(1998)
Russian Math. Surveys
, vol.53
, pp. 731-776
-
-
Chueshov, I.1
-
6
-
-
10844269983
-
-
English translation
-
Chueshov, I. D. (1999). Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Kharkov: Acta. In: Russian. English translation: Kharkov: Acta, 2002. See also http://www.emis.de/monographs/ Chueshov/
-
(2002)
Kharkov: Acta
-
-
-
7
-
-
10844284940
-
Determining functionals for nonlinear damped wave equations
-
Chueshov, I., Kalantarov, V. (2001). Determining functionals for nonlinear damped wave equations. Matem. Fizika. Analyz. Geometriya 8:215-227.
-
(2001)
Matem. Fizika. Analyz. Geometriya
, vol.8
, pp. 215-227
-
-
Chueshov, I.1
Kalantarov, V.2
-
8
-
-
84904323095
-
Determining functionals for a class of second order in time evolution equations with applications to von Karman equations
-
V. Barbu et al. eds. Boston-Dordrecht-London: Kluwer
-
Chueshov, I., Lasiecka, I. (2003). Determining functionals for a class of second order in time evolution equations with applications to von Karman equations. In: V. Barbu et al. eds. Analysis and Optimization of Differential Systems. Boston-Dordrecht-London: Kluwer, pp. 109-122.
-
(2003)
Analysis and Optimization of Differential Systems
, pp. 109-122
-
-
Chueshov, I.1
Lasiecka, I.2
-
9
-
-
1542406498
-
Global attractors for von Karman evolutions with a nonlinear boundary dissipation
-
Chueshov, I., Lasiecka, I. (2004). Global attractors for von Karman evolutions with a nonlinear boundary dissipation. J. Diff. Equations 198:196-231.
-
(2004)
J. Diff. Equations
, vol.198
, pp. 196-231
-
-
Chueshov, I.1
Lasiecka, I.2
-
10
-
-
10844276752
-
Kolmogorov's ε-entropy for a class of invariant sets and dimension of global attractors for second order in time evolution equations with nonlinear damping
-
Marcel Dekker. To appear in
-
Chueshov, I., Lasiecka, I. Kolmogorov's ε-entropy for a class of invariant sets and dimension of global attractors for second order in time evolution equations with nonlinear damping. In: Proceedings Lecture Notes in Pure and Applied Mathematics. Marcel Dekker. To appear in 2004.
-
(2004)
Proceedings Lecture Notes in Pure and Applied Mathematics
-
-
Chueshov, I.1
Lasiecka, I.2
-
11
-
-
0036908993
-
On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation
-
Chueshov, I., Eller, M., Lasiecka, I. (2002). On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Comm. PDE 27:1901-1951.
-
(2002)
Comm. PDE
, vol.27
, pp. 1901-1951
-
-
Chueshov, I.1
Eller, M.2
Lasiecka, I.3
-
12
-
-
0000085549
-
Finite dimensional exponential attractors for semilinear wave equations with damping
-
Eden, A., Milani, A., Nicolaenko, B. (1992). Finite dimensional exponential attractors for semilinear wave equations with damping. J. Math. Anal. Appl. 169:408-419.
-
(1992)
J. Math. Anal. Appl.
, vol.169
, pp. 408-419
-
-
Eden, A.1
Milani, A.2
Nicolaenko, B.3
-
13
-
-
0003465257
-
-
Masson, Paris: Wiley
-
Eden, A., Foias, C., Nicolaenko, B., Temam, R. (1994). Exponential Attractors for Dissipative Evolution Equations. Masson, Paris: Wiley.
-
(1994)
Exponential Attractors for Dissipative Evolution Equations
-
-
Eden, A.1
Foias, C.2
Nicolaenko, B.3
Temam, R.4
-
14
-
-
34248227730
-
Attractors for wave equation with nonlinear dissipation and critical exponent
-
Fereisel, E. (1992). Attractors for wave equation with nonlinear dissipation and critical exponent. C.R. Acad.Sc. Paris, Ser I 315:551-555.
-
(1992)
C.R. Acad.Sc. Paris, Ser I
, vol.315
, pp. 551-555
-
-
Fereisel, E.1
-
15
-
-
0000220290
-
Global attractors for semilinear damped wave equations with supercritical exponent
-
Fereisel, E. (1995). Global attractors for semilinear damped wave equations with supercritical exponent. J. Diff. Equations 116:431-447.
-
(1995)
J. Diff. Equations
, vol.116
, pp. 431-447
-
-
Fereisel, E.1
-
16
-
-
0002449201
-
Sur le comportement global des solutions nonstationnaires des équations de Navier-Stokes en dimension deux
-
Foias, C., Prodi, G. (1967). Sur le comportement global des solutions nonstationnaires des équations de Navier-Stokes en dimension deux. Rend. Sem. Mat. Univ. Padova 39:1-34.
-
(1967)
Rend. Sem. Mat. Univ. Padova
, vol.39
, pp. 1-34
-
-
Foias, C.1
Prodi, G.2
-
17
-
-
0000160580
-
Attractors of damped nonlinear hyperbolic equations
-
Ghidaglia, J. M., Temam, R. (1987). Attractors of damped nonlinear hyperbolic equations. J. Math. Pure et Appl. 66:273-319.
-
(1987)
J. Math. Pure et Appl.
, vol.66
, pp. 273-319
-
-
Ghidaglia, J.M.1
Temam, R.2
-
19
-
-
0003065470
-
Attractors for dissipative evolutionary equations
-
River Edge, NJ: World Science Publishing
-
Hale, J. K., Raugel, G. (1993). Attractors for dissipative evolutionary equations. In: International Conference on Differential Equations. Vol. 1, 2. River Edge, NJ: World Science Publishing, pp. 3-22.
-
(1993)
International Conference on Differential Equations
, vol.1-2
, pp. 3-22
-
-
Hale, J.K.1
Raugel, G.2
-
21
-
-
0000892579
-
Rate of attraction to a non-hyperbolic attractor
-
Kostin, I. N. (1998). Rate of attraction to a non-hyperbolic attractor. Asympt. Anal. 16:203-222.
-
(1998)
Asympt. Anal.
, vol.16
, pp. 203-222
-
-
Kostin, I.N.1
-
22
-
-
34250401659
-
A dynamical system generated by the Navier-Stokes equations
-
Ladyzhenskaya, O. (1975). A dynamical system generated by the Navier-Stokes equations. J. Soviet Math. 3:458-479.
-
(1975)
J. Soviet Math.
, vol.3
, pp. 458-479
-
-
Ladyzhenskaya, O.1
-
23
-
-
0000375959
-
Finite dimensionality of bounded invariant sets for Navier Stokes systems and other dissipative systems
-
Ladyzhenskaya, O. (1985). Finite dimensionality of bounded invariant sets for Navier Stokes systems and other dissipative systems. J. Soviet Math. 28:714-726.
-
(1985)
J. Soviet Math.
, vol.28
, pp. 714-726
-
-
Ladyzhenskaya, O.1
-
24
-
-
0000881888
-
Decay of the solution of the wave equation in a bounded region with boundary dissipation
-
Lagnese, J. (1983). Decay of the solution of the wave equation in a bounded region with boundary dissipation. J. Diff. Equations 50:163-182.
-
(1983)
J. Diff. Equations
, vol.50
, pp. 163-182
-
-
Lagnese, J.1
-
27
-
-
0026838533
-
Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions
-
Lasiecka, I., Triggiani, R. (1992). Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25:189-224.
-
(1992)
Appl. Math. Optim.
, vol.25
, pp. 189-224
-
-
Lasiecka, I.1
Triggiani, R.2
-
28
-
-
84972506618
-
Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation
-
Lasiecka, I., Tataru, D. (1993). Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Diff. Integral Equations 6:507-533.
-
(1993)
Diff. Integral Equations
, vol.6
, pp. 507-533
-
-
Lasiecka, I.1
Tataru, D.2
-
29
-
-
0036600441
-
Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation
-
Lasiecka, I., Ruzmaikina, A. (2002). Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation. J. Math. Anal. Appl. 270:16-50.
-
(2002)
J. Math. Anal. Appl.
, vol.270
, pp. 16-50
-
-
Lasiecka, I.1
Ruzmaikina, A.2
-
30
-
-
0005750037
-
Negatively invariant sets of compact maps and an extension of a theorem of Carwright
-
Mallet-Paret, J. (1976). Negatively invariant sets of compact maps and an extension of a theorem of Carwright. J. Diff. Equations 22:331-348.
-
(1976)
J. Diff. Equations
, vol.22
, pp. 331-348
-
-
Mallet-Paret, J.1
-
31
-
-
0037141639
-
Large time behavior via the method of l-trajectories
-
Málek, J., Pražak, D. (2002). Large time behavior via the method of l-trajectories. J. Diff. Equations 181:243-279.
-
(2002)
J. Diff. Equations
, vol.181
, pp. 243-279
-
-
Málek, J.1
Pražak, D.2
-
32
-
-
1542539295
-
On finite fractal dimension of the global attractor for the wave equation with nonlinear damping
-
Pražak, D. (2002). On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. J. Dyn. Diff. Equations 14:764-776.
-
(2002)
J. Dyn. Diff. Equations
, vol.14
, pp. 764-776
-
-
Pražak, D.1
-
33
-
-
0000108951
-
Une equation des ondes avec amortissment non lineaire dans le cas critique en dimensions trois
-
Raugel, G. (1992). Une equation des ondes avec amortissment non lineaire dans le cas critique en dimensions trois. C. R. Acad. Sci. Paris 314:177-182.
-
(1992)
C. R. Acad. Sci. Paris
, vol.314
, pp. 177-182
-
-
Raugel, G.1
-
34
-
-
0000687761
-
Unique continuation for weak solutions of the wave equation plus a potential
-
Ruiz, A. (1992). Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures et Appl. 71:455-467.
-
(1992)
J. Math. Pures Et Appl.
, vol.71
, pp. 455-467
-
-
Ruiz, A.1
-
37
-
-
2142780336
-
Dimension of the global attractor for damped nonlinear wave equation
-
Shengfan, Z. (1999). Dimension of the global attractor for damped nonlinear wave equation. Proceedings AMS 127:3623-3631.
-
(1999)
Proceedings AMS
, vol.127
, pp. 3623-3631
-
-
Shengfan, Z.1
-
40
-
-
10844224826
-
Global dynamics of nonlinear wave equations with cubic nonmonotone damping
-
You, Y. (2004). Global dynamics of nonlinear wave equations with cubic nonmonotone damping. Dyn. Partial Diff. Equations 1(1):65-87.
-
(2004)
Dyn. Partial Diff. Equations
, vol.1
, Issue.1
, pp. 65-87
-
-
You, Y.1
|